首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.

Using nanofiller additives in the polymer matrix to form nanocomposites is a potential way of reducing the flame spread and enhancing flame retardancy of polymeric materials during fire. To understand the fire reaction properties and the relative performance of flame-retardant additives in polymer during well-developed fire, neat polystyrene, polystyrene–silica and polystyrene–nanoclay (MMT) have been tested in a cone calorimeter. The neat polystyrene and the polystyrene nanocomposites have been prepared via an in situ polymerization method. An external heat flux of 50 kW m?2 was applied in the test, and parameters such as heat release rate, peak heat release rate, time to ignition, smoke toxicity, CO and CO2 yield have been investigated. Both neat polystyrene and polystyrene nanocomposites have shown the trend of a thermally thick charring polymer in the heat release rate over time data. The nanocomposites had an overall better flame retardancy than the neat polystyrene in terms of lower peak heat release rate, lower average mass loss rate and enhanced char formation. The nanocomposites had also reduced smoke emission with lower CO and CO2 yield compared to the neat polystyrene. The overall flame retardancy was enhanced as the nanofiller loading was increased for both the nanosilica and MMT nanocomposites.

  相似文献   

2.
Layered double hydroxides (LDHs) are new nanofillers which exhibit improved thermal and flammability properties in various kinds of polymer matrices. These materials have certain advantages over conventional metal hydroxides and also layered silicates so far as the flame retardancy is concerned. In this article, flammability and thermal properties of the nanocomposite based on low density polyethylene (LDPE) and Mg-Al based layered double hydroxide (Mg-Al LDH) are reported in detail. The nanocomposites containing different LDH concentrations were prepared by melt-compounding using a tightly intermeshing co-rotating twin-screw extruder. The morphological analysis reveals an exfoliated/intercalated type LDH particle morphology in these nanocomposites. The thermogravimetric analysis (TGA) shows that even a small amount of LDH improves the thermal stability and onset decomposition temperature in comparison with the unfilled LDPE. The heat release rate (HRR) and its maximum (PHRR) during cone-calorimeter investigation are found to be reduced significantly with increasing LDH concentration. The nanocomposites not only exhibit reduced total heat released (measure of propensity to produce long duration fire), but also lower tendency to fast fire growth (measured by the ratio of PHRR and time of ignition). The limited oxygen index (LOI) and the dripping behavior are also improved with increasing LDH concentration.  相似文献   

3.
Flame retardation of materials has become a very important issue of concern to researchers and producers. Recently, it has been found that the nano fillers are ecologically friendly and having a high aspect ratio, their dispersion in the polymer matrix leads to significant improvements of many properties. From the point of view of flame retardancy, the nano fillers are able even in small amounts to significantly decrease important flammability characteristics such as heat release rate and increase the oxygen index. This paper covers some recent contributions and progresses to the flammability characteristics of different groups of polymer nanocomposites such as: thermoplastics, thermosettings, elastomers, thermoplastic elastomers and polyblends.  相似文献   

4.
The high fire safety of polymer nanocomposites is being pursued by research institutions around the world. In addition to intrinsic flame retardancy strategy, the additive-type flame retardants have attracted increasing attention due to low commercial cost and easy fabrication craft. However, traditional additive-type flame retardants usually need high addition amount to achieve a desirable effect, which causes many side-effects on the overall performance of polymer materials, such as deteriorated mechanical property and processability. At present, two-dimensional(2 D) nanomaterials have also been applied to reduce the fire hazards of polymer(nano)composites with the coupling of barrier function and catalysis as well as carbonization effect. Even though most research work mainly focus on graphene-based flame retardants, more emerging two-dimensional nanomaterials are taking away research attention, due to their complementary and unique properties, mainly including hexagonal boron nitride(h-BN), molybdenum disulfide(MoS_2), metal organic frameworks(MOF), carbon nitride(CN),titanium carbide(MXene) and black phosphorene(BP). In this review, except for graphene, the flame retardant mechanism involving different layered nanomaterials are also reviewed. Meanwhile, the functionalization method and flame retardancy effect of different layered nanomaterials are emphatically discussed for offering an effective reference to solve the fire hazards of polymer materials. Moreover, this work objectively evaluates the practical significance of polymer/layered nanomaterials composites for industrial application.  相似文献   

5.
The progress of flame retarded polymer nanocomposites and coatings in China over the past decades are described in this review. Emphasis on flammability performance of polymer nanocomposites containing nanofillers, mainly layered inorganic compounds, nanofibers and nanoparticles, combined with conventional flame retardant additives are addressed based on the open literature. Polymeric coatings with improved flame retardancy prepared using a wide variety of additives and UV‐curing technology are also introduced. Derived from this research, the combination of multiple methods and technologies including catalyst and nanotechnology, is predicted to have a high probability to enhance char formation and improve the flame retardancy of polymeric materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A melt blending method was used to prepare ABS/clay and ABS-g-MAH/clay nanocomposites. Cone calorimeter and advanced rheological extension system (ARES©) were employed to measure flammability and dynamic rheological properties. The main aim is to establish a relationship between the clay network structure and flammability properties of polymer nanocomposites. From the results of dynamic rheological measurements, it was found that the clay network structure was formed in ABS-g-MAH/clay nanocomposites, which strongly affected the flammability properties of the nanocomposites. The clay network improves the melt viscosity and results in restraint on the mobility of the polymer chains during combustion, which leads to significant improvement of flame retardancy for the nanocomposites.  相似文献   

7.
Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) were incorporated onto the surface of epoxy and bismaleimide (BMI) carbon fiber composites. Their flammability behaviors were investigated by a cone calorimeter. The composites with buckypaper reduced the heat release rate (HRR) by more than 60% peak and smoke generation by 50% during combustion. The effects of different buckypaper on the flame retardancy of epoxy and BMI were compared and discussed. Our research team found that buckypapers acted as an effective flame-retardant shield to dramatically reduce the fire hazards of composites if they survived during fire combustion. Thermogravimetric analyses was used to compare the thermo-oxidation stability of the resins and buckypapers to explain the different effects of SWCNT and MWCNT buckypaper on flammability of epoxy and BMI carbon fiber composites.  相似文献   

8.
Polystyrene based nanocomposites (PNCs) with and without flame retardant additives were successfully prepared through a single-screw extrusion technique. The combination effect of nanoparticles and flame retardants was investigated with nanosilica and attapulgite clay as nanofillers, and with a NASA formulated SINK flame retardant. A comprehensive study was done by Cone Calorimetry, UL94 and TGA.The addition of nanoparticles to polystyrene generally improved the OI of polystyrene. The horizontal burning tests suggested that nanofiller types have different impacts on the flammability of nanocomposites. According to the vertical burning tests and oxygen indices, it was found that polystyrene/silica and polystyrene/attapulgite clay PNCs alone are not flame retardant. In fact, the materials burned faster. However, the combination of nanocomposites with the SINK flame retardant significantly altered the thermal stability, and flammability of the materials. A remarkable reduction in heat release rates of polystyrene was achieved for both silica and attapulgite with flame retardant nanocomposites. For instance, the introduction of 20% SINK into PS reduced the PHRR of PS from 1212 to 838 (−31%); 10% silica reduced it from 1212 to 1060 (−13%), while the combination of silica and SINK reduced it to 530 (−56%), which clearly shows interaction between nanosilica and SINK.  相似文献   

9.
The paper investigates critically the feasibility to make fire proof polymer using nanoparticles. It includes organoclay, polyhedral oligomeric silsesquioxanes (POSS) and carbon nanotube (CNT). It is shown that they can be used to make material exhibiting low heat release rate (HRR) when they undergo heat. We have developed novel approaches to characterize quantitatively the nanodispersion by solid state NMR and by TEM associated with image analysis and we have demonstrated that the dispersion at the nanoscale is essential to achieve the best performance. On the other hand, low flammability of nanocomposites is only achieved in terms of HRR but they fail in terms of UL-94 and limiting oxygen index (LOI). To overcome this problem, we have combined nanoparticles with traditional flame retardants (intumescents) or with plasma treatment. The nanofillers act as synergists and offer an exceptional way for making fire safe polymers.  相似文献   

10.
A novel EVA/unmodified nano-magnesium hydroxide(NMH)/silicone rubber ternary nanocomposite was prepared by using a special compound flame retardant of NMH and silicone rubber(CFR).The flammability of the ternary composite was studied by cone calorimeter test(CCT).Synergistic effect on flame retardancy was found between silicone rubber and NMH.EVA/CFR ternary nanocomposite showed the lowest peak heat release rate(PHRR)and mass loss rate (MLR)among the samples of virgin EVA,EVA composites.The synergistic flame retardancy of silicone rubber and NMH in EVA system is attributed to the enhanced char layers in the condensed phase that prevents the heat and mass transfer in the fire.  相似文献   

11.
Polyaniline nanofibers and their composites with carbon nanotubes were developed as an effective flame‐retardant material using a facile green method. Polyaniline nanofibers were used as a smart flame‐retardant for acrylonitrile–butadiene–styrene polymer. The polyaniline nanofibers were dispersed in polymer matrix forming well‐dispersed polymer nanocomposites. Effect of polyaniline nanofiber mass ratio on the polymer nanocomposite properties was studied. Polyaniline nanofiber composites with carbon nanotubes were also dispersed in polymer matrix. The thermal stability and flammability properties of the polymer nanocomposites were investigated. The rate of burning of polymer nanocomposites achieved 82.5% reduction (7.32 mm/min) compared with virgin polymer (42.5 mm/min). The reduction in peak heat release rate and total heat release of the polymer nanocomposites containing nanofibers achieved 74 and 34%, respectively. Interestingly, the average mass loss rate was significantly reduced by 58% and the emission of carbon monoxide and carbon dioxide gases were suppressed by 20 and 47%, respectively. The effect of polyaniline nanofibers composites on the flammability of polymer nanocomposites was also studied. Polyaniline nanofibers and their composites were characterized using Fourier transform infrared spectroscopy and transmission and scanning electron microscopy. The dispersion of polyaniline nanofibers in polymer nanocomposites was characterized using transmission electron microscopy. The different polymer nanocomposites were characterized using thermogravimetric analysis, UL94 flame chamber, and cone calorimeter tests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This study explores for the first time the synergistic fire retardant action of natural hydrated calcium borate, namely the mineral colemanite, which partially replaces antimony oxide in brominated flame retardant high-impact polystyrene compounds. Various antimony oxide to hydrated calcium borate ratios were employed keeping the brominated flame retardant additive at a constant loading level. With partial colemanite substitution for antimony oxide, lower heat release rate, total heat evolved and fire growth index was obtained under forced flaming fire conditions. Synergism was also seen in limiting oxygen index along with maintained V-0 classification in UL-94 tests. Regarding fire behaviour and flammability ratings, a large antimony oxide to calcium borate ratio provided ultimate fire retardant performance whereas magnitudes of synergism in average heat release rate and total heat evolved tend to be higher towards a smaller ratio. Effective heats of combustion and structural/morphological characterization of fire residues ascribed the underlying mechanism demonstrated by hydrated calcium borate to the formation of a consolidated residue that co-operates with the dominant gas phase fire retardancy originating from bromine-antimony synergism. It is thus proposed that coupling is achieved between gas phase and condensed phase modes of action increasing the overall fire retardant effectiveness. Along with enhanced fire retardancy, thermal stability and mechanical properties were satisfactorily maintained with the use of hydrated calcium borate at a variety of loading levels in compounds.  相似文献   

13.
In this study, polypropylene (PP)/thermoplastic polyurethanes (TPU) filled with inorganic intumescent flame retardant expanded graphite (EG) was prepared by melt blending in a twin-screw extruder. The thermal stability, fire retardancy, mechanical properties, and fracture morphology of PP/TPU composites with treated and untreated EG were investigated by thermogravimetric analysis, cone calorimeter, and scanning electron microscope. The results showed that both untreated and treated EG can greatly enhance the thermal stability and fire resistance of polymer matrix materials. Compared with untreated EG, treated EG can further improve the flame retardancy of the composites. For example, treated EG can further reduce the heat release rate, total heat release, and CO emissions of the composites in the combustion. Surface treatment of EG could significantly improve elongation at break and impact strength of PP/TPU/EG composites due to its enhanced interfacial adhesion and the good dispersion of EG particles in the polymer matrix.  相似文献   

14.
Nanosized carbon black (CB) was introduced into polypropylene/carbon nanotubes (PP/CNTs) nanocomposites to investigate the effect of multi‐component nanofillers on the thermal stability and flammability properties of PP. The obtained ternary nanocomposites displayed dramatically improved thermal stability compared with neat PP and PP/CNTs nanocomposites. Moreover, the flame retardancy of resultant nanocomposites was greatly improved with a significant reduction in peak heat release rate and increase of limited oxygen index value, and it was strongly dependent on the content of CB. This enhanced effect was attributed mainly to the formation of good carbon protective layers by CB and CNTs during combustion. Rheological properties further confirmed that CB played an important role on promoting the formation of crosslink network on the base of PP/CNTs system, which were also responsible for the improved thermal stability and flame retardancy of PP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Sol–gel derived TiO2 and SiO2-wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites.  相似文献   

16.
Grafting of ethylene glycol methacrylate phosphate (EGMP) monomer polymerized from alumina nanoparticles has been performed in order to confer a better thermal stability and fire retardancy to PMMA and PS nanocomposites. Grafting and polymerization processes have been investigated using FTIR, TGA, and elemental analyses. Thermal stability and decomposition routes of monomer and polymer grafted alumina have been studied using thermogravimetric analysis and compared with the thermal behavior of the same alumina modified with octylsilane. The thermal stability of EGMP supported by the nanoparticles is higher than that of free EGMP. The incorporation of 5 wt% of both surface treated alumina in PMMA and PS leads to an improvement of thermal stability in comparison with unfilled polymers as well as nanocomposites containing unmodified alumina. Furthermore, the grafting of organic compounds on alumina also allows the peak of heat release rate measured using a cone calorimeter to be significantly reduced for PMMA nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This study describes the mechanism of flammability reduction in flame-retarded polymer matrix organo-montmorillonite reinforced nanocomposites. Morphologies of untested polymer nanocomposites and char residues formed by combustion in the mass loss calorimeter are characterized by XRD and TEM techniques. It is postulated that a combination of well-dispersed montmorillonite platelets and flame retardants in the polymer matrix provides nano-structured char formation. Initial montmorillonite dispersion in flame-retarded nanocomposites is found to be a major controlling factor on formed char nanostructures. An initially intercalated structure is invariantly converted to complete montmorillonite collapse whereas an initially exfoliated structure transforms to nano-structured chars demonstrating retained exfoliation or a new state of intercalation via incomplete collapse of montmorillonite layers. It is proposed that nano-structured char formation is the effective mechanism of flammability reduction, i.e. reduction in rate of heat release during combustion, in flame-retarded polymer nanocomposites.  相似文献   

18.
The reaction to fire of polymer nanocomposites (thermoplastic polyurethane and polyamide-6) containing two different nanofillers (organoclay and carbon nanotube) has been investigated. Polymer nanocomposites exhibit significant reduction of peak of heat release rate but the nanomorphology (exfoliation, intercalation and presence of tactoids) does not play any significant role, although a reasonable level of nanodispersion is necessary to achieve good flame retardancy in specific cases (mass loss calorimetry experiment). Modelling aspects for the time to ignition are also proposed in the paper. It is shown that the approach ‘nanocomposite’ gives the best results combined with conventional flame retardants (phosphinate and phosphate) and leads to synergistic effects. The aspects of nanodispersion of the nanoparticle with the flame retardant (microfiller) are fully commented in the paper using TEM and solid state NMR. Mechanisms of action are finally proposed explaining the synergy when conventional flame retardants are combined with nanoparticles.  相似文献   

19.
任杰  李建波 《高分子科学》2016,34(6):785-796
To minimize the loading level of the char-forming phosphorus based flame retardants in the poly(lactic acid) (PLA) with reduced flammability, we have developed the flame-retarded PLA nanocomposites by melt blending method incorporating organically modified montmorillonite (OMMT) and aluminium diethylphosphinate (AlPi) additives. The influence of AlPi and OMMT on flame retardancy and thermal stability of PLA was thoroughly investigated by means of the limiting oxygen index (LOI), UL94 test, cone calorimeter, X-ray diffraction (XRD), thermogravimetric analysis and scanning electronic microscopy (SEM). The experimental results show that the PLA/AlPi/OMMT system has excellent fire retardancy. The LOI value increases from 19% for pristine PLA to 28% for the flame-retarded PLA. Cone calorimeter analysis of the PLA/AlPi/OMMT exhibits a reduction in the peak heat release rate values by 26.2%. Thermogravimetric analysis and SEM of cone calorimeter residues indicate that OMMT significantly enhances the thermal stability, promotes char-forming and suppresses the melt dripping. The research of this study implies that the combining of the flame retardant and organoclay results in a synergistic effect. In addition, the flame-retarded PLA nanocomposite also exhibits notable increase in the impact strength and the elongation at break.  相似文献   

20.
王东升  闻新  李云辉  唐涛 《应用化学》2018,35(12):1427-1433
聚甲基丙烯酸甲酯(PMMA)是一种重要的透明高分子材料,但是PMMA的易燃性限制了其应用。 本工作在纳米二氧化硅表面接枝含磷阻燃剂9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO),并用于聚甲基丙烯酸甲酯(PMMA)的改性。 极限氧指数(LOI)、垂直燃烧(UL-94)和锥形量热(CCT)测试结果表明,制备的PMMA复合材料的阻燃性能大幅度提高,这主要归因于纳米粒子和含磷阻燃剂的协同阻燃作用,形成致密的炭保护层结构。 同时,二氧化硅接枝DOPO的加入可以保持PMMA良好的透明性,这有利于材料在光学透明性要求较高的领域的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号