首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

2.
The evolution and the origin of “solid-like state” in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the “solid-like” state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.  相似文献   

3.
Melt compounded PP/MWCNT (polypropylene/multi-walled carbon nanotube) composites were prepared by diluting highly concentrated masterbatch chips. Maleic anhydride grafted polypropylene (PP-g-MAH) was used as a compatibilizer to promote dispersion and interaction of MWCNTs. Rheological properties were investigated with respect to the MWCNT and compatibilizer loadings, and related to morphological and electrical properties. As the MWCNT loading was increased, shear viscosity and yield stress were increased at low shear rate region because of increased interaction between MWCNT particles. When the MWCNT loading was low, MWCNT dispersion was improved by the PP-g-MAH compatibilizer because MWCNTs were wetted sufficiently due to the presence of the compatibilizer. However, rheological and electrical properties of highly concentrated MWCNT composites with the compatibilizer were not improved compared with PP/MWCNT composites without the compatibilizer because the compatibilizer did not provide sufficient wrapping of MWCNT particles. Electrical and morphological properties of PP/MWCNT composites were correlated with the rheological properties in steady and dynamic oscillatory shear flows.  相似文献   

4.
The evolution and the origin of "solid-like state" in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time,temperature and deformation dependencies of the "solid-like" state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA,the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.  相似文献   

5.
郑强 《高分子科学》2012,30(6):853-864
Ethylene/propylene-random-copolymer(PPR)/clay nanocomposites were prepared by two-stage melt blending. Four types of compatibilizers,including an ethylene-octene copolymer grafted maleic anhydride(POE-g-MA) and three maleic-anhydride-grafted polypropylenes(PP-g-MA) with different melt flow indexes(MFI),were used to improve the dispersion of organic clay in matrix.On the other hand,the effects of organic montmorillonite(OMMT) content on the nanocomposite structure in terms of clay dispersion in PPR matrix,thermal behavior and tensile properties were also studied. The X-ray diffraction(XRD) and transmission electron microscopy(TEM) results show that the organic clay layers are mainly intercalated and partially exfoliated in the nanocomposites.Moreover,a PP-g-MA compatibilizer(compatibilizer B) having high MFI can greatly increase the interlayer spacing of the clay as compared with other compatibilizers.With the introduction of compatibilizer D(POE-g-MA),most of the clays are dispersed into the POE phase,and the shape of the dispersed OMMT appears elliptic,which differs from the strip of PP-g-MA.Compared with virgin PPR,the Young’s modulus of the nanocomposite evidently increases when a compatibilizer C(PP-g-MA) with medium MFI is used.For the nanocomposites with compatibilizer B and C,their crystallinities(X_c) increase as compared with that of the virgin PPR. Furthermore,the increase of OMMT loadings presents little effect on the melt temperature(T_m) of the PPR/OMMT nanocomposites,and slight effect on their crystallization temperature(T_c).Only compatibilizer B can lead to a marked increases in crystallinity and T_c of the nanocomposite when the OMMT content is 2 wt%.  相似文献   

6.
The study of high density polyethylene (HDPE)/ethylene‐vinyl acetate (EVA)/and organically‐modified montmorillonite (OMT) nanocomposites prepared by melt intercalation followed by exposure to gamma‐rays have been carried out. The morphology and properties of the nanocomposites were studied using X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and cone calorimetry. The purpose of the study focuses on the influence of gamma irradiation on the morphology, thermal stability and flammability properties of the nanocomposites. XRD studies and TEM images verified that the ordered intercalated nanomorphology of the nanocomposites was not disturbed by gamma irradiation. TGA data showed that the nano‐dispersion of clay throughout the polymer inhibited the irradiation degradation of HDPE/EVA blend, which led to the nanocomposites exhibiting superior irradiation‐resistant properties than that of the pure blend. Cone calorimetry results indicated that the improvement in heat release rate (HRR) for irradiated HDPE/EVA blend was suppressed efficiently when clay was present. Increasing clay loading from 2 to 10% was beneficial by improving the flammability properties of the nanocomposites, but promoted a rapid increase in the sub‐peak HRR at high irradiation dose level. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

A hybrid nanocomposite based on ethylene propylene diene monomer/carboxylated styrene-butadiene rubber (EPDM/XSBR) blend with different concentrations (0–7 phr) of multiwall carbon nanotube (MWCNT) was prepared on a two-roll mill. The role of grafted maleic anhydride (EPDM-g-MA) as compatibilizer and the effect of different concentrations of MWCNT on mechanical properties, morphology, rheological and curing characteristics of nanocomposites were investigated. The curing behavior of the prepared nanocomposites was studied using a rheometer. Also, the microstructure of nanocomposites was observed using TEM. By increasing the MWCNT concentration in the compatible blends, the curing time and scorch time of the blends decreased, while the maximum and minimum torque increased. Failure surface morphology studies showed that the existence of EPDM-g-MAH compatibilizer improved the distribution of MWCNT within the polymer matrix and uniform distribution of MWCNT with a small amount of aggregation was obtained. On the other hand, the presence of MWCNT in the matrix led to a sharper surface of the fracture. Also, mechanical properties such as modulus, tensile strength, hardness, fatigue, resilience and elongation-at-break for compatible EPDM/XSBR nanocomposite showed better results than those for incompatible composite.  相似文献   

8.
聚合物基粘土纳米复合材料的流变行为研究   总被引:7,自引:0,他引:7  
聚合物基粘土纳米复合材料具有与常规颗粒填充体系类似的流变特性 :在整个频率范围内 ,储能模量和损耗模量均随粘土含量的增加而变高 ,其频率依赖性会表现出非未端行为 :且当粘土含量超过临界值以后 ,储能模量会在低频区表现出似固体的平台发展。但与之不同的是前者在低粘土含量的条件下 (<10 % (wt) )就会表现出似固体行为或非末端行为。这些流变特性还会受到粘土的径厚比、化学特性、聚合物基体的分子结构参数和粘土与基体间的相互作用强度等因素的影响。聚合物基粘土纳米复合材料的流变行为是与其微观结构的形成和演化以及聚合物分子链在特定环境下的粘弹松弛过程紧密联系在一起的。本文综述了插层型、剥离型和聚合物分子链一端受限剥离型聚合物基粘土纳米复合材料在力场作用下的流变特性和粘弹松弛机理方面的研究进展。  相似文献   

9.
X‐ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)‐modified maleic‐anhydride‐grafted polypropylene/clay (PP‐g‐MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP‐g‐MA (designated as PP‐g‐HMA) and then mixing the PP‐g‐HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X‐ray diffraction data and transmission electron microscopy images of PP‐g‐HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP‐g‐HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP‐g‐HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three‐dimensional crystal growth to a two‐dimensional spherulitic growth. Mechanical properties of PP‐g‐HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP‐g‐HMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3242–3254, 2005  相似文献   

10.
Biodegradable poly(butylene succinate)/nanosized carbon black (PBS/CB) nanocomposites were prepared by melt compounding to investigate the effect of CB on flammability and mechanical properties of PBS. In the nanocomposites, CB displayed some positive effect on improving the flame retardancy of PBS, mainly on the decrease of peak of heat release rate, the increase of limited oxygen index value, and the inhibition of melt dripping. It was contributed to the formation of a good carbon layer during combustion and of a network structure in the PBS matrix. Moreover, a good balance on mechanical performances of PBS/CB nanocomposites was achieved with enhanced stiffness and high toughness, which was ascribed to the compatibilization of PBS‐g‐MA, leading to a good dispersion of nanofillers and strong matrix‐nanoparticle interaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.

A new type of conductive filler, namely expanded graphite (EG), was used to prepare novel nanocomposites. The EG was incorporated into several rather different polymers, specifically polycarbonate (PC), low‐density polyethylene (LDPE), isotactic polypropylene (PP), and polystyrene (PS), using melt mixing in a small‐scale DACA‐Microcompounder. The EG content was varied between 1 and 20 wt%. The rheological properties and morphologies of the nanocomposites were characterized by melt rheology and scanning electron microscopy (SEM), respectively. The melt‐state linear viscoelastic properties were investigated using an ARES rheometer, with the measurements performed in the dynamic mode at various temperatures over a wide range of frequencies. Addition of the EG increased the linear dynamic moduli and melt viscosity of the materials. Up to a certain critical concentration of EG, the materials exhibited a simple liquid‐like behavior. Above this concentration, however, significant changes in the frequency dependences of the moduli and viscosity were observed. In addition, the moduli showed a liquid‐solid transition resulting in a second plateau in the low frequency‐regime, and the complex viscosity revealed shear‐thinning behavior. Specific values of this percolation concentration were found to be at around 4 wt% in the case of PC/EG, 9 wt% for PP/EG and PS/EG, and 12 wt% for PE/EG. This critical concentration was correlated to a network‐like structure formed through interactions between the EG platelets and the polymers. The extent of these complications was found to vary from polymer to polymer, presumably due to different degrees of EG exfoliation and dispersion arising from different EG‐polymer interactions and from variable shearing forces dependent on the polymer viscosities. The formation of network‐like structures is very sensitively displayed using van Gurp‐Palmen plots, which are most suitable for identifying “rheological percolation” in our investigated systems.  相似文献   

12.
董智贤  贾德民 《高分子科学》2013,31(8):1127-1138
Natural rubber grafted maleic anhydride (NR-g-MAH) was synthesized by mixing maleic anhydride (MAH) and natural rubber (NR) in solid state in a torque rheometer using dicumyl peroxide (DCP) as initiator. Then the self-prepared NR-g-MAH was used as a compatibilizer in the natural rubber/short nylon fiber composites. Both the functionalization of NR with MAH and the reaction between the modified rubber and the nylon fiber were confirmed by Fourier transform infrared spectroscopy (FTIR). Composites with different nylon short fiber loadings (0, 5, 10, 15 and 20 phr) were compounded on a two-roll mill, and the effects of the NR-g-MAH on the tensile and thermal properties, fiber-rubber interaction, as well as the morphology of the natural rubber/short nylon fiber composites were investigated. At equal fiber loading, the NR-g-MAH compatibilized NR/short nylon fiber composites showed improved tensile properties, especially the tensile modulus at 100% strain which was about 1.5 times that of the corresponding un-compatibilized ones. The equilibrium swelling tests proved that the incorporation of NR-g-MAH increased the interaction between the nylon fibers and the NR matrix. The crosslink density measured with NMR techniques showed that the NR-g-MAH compatiblized composites had lower total crosslink density. The glass transition temperatures of the compatibilized composites were about 1 K higher than that of the corresponding un-compabilized ones. Morphology analysis of the NR/short nylon fiber composites confirmed NR-g-MAH improved interfacial bonding between the NR matrix and the nylon fibers. All these results signified that the NR-g-MAH could act as a good compatilizer of NR/short nylon fiber composites and had a potential for wide use considering its easy to be prepared and compounded with the composites.  相似文献   

13.
The effects of reprocessing cycles on the structure and properties of isotactic polypropylene (PP)/Cloisite 15A (OMMT) (5 wt. %) nanocomposites was studied in presence of maleic anhydride-grafted-polypropylene (PP-g-MA) (20 wt. %) used as the compatibiliser to improve the clay dispersion in the polymer matrix. The various nanocomposite samples were prepared by direct melt intercalation in an internal mixer, and further they were subjected to 4 reprocessing cycles. For comparative purposes, the neat PP was also processed under the same conditions. The nanocomposite structure and the clay dispersion have been characterized by wide angle X-ray scattering (WAXS), transmission electron microscopy (TEM) and rheological measurements. Other characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), tensile measurements, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have also been used to evaluate the property changes induced by reprocessing. The study showed through XRD patterns that the repetitive reprocessing cycles modified the initial morphology of PP/OMMT nanocomposites by improving the formation of intercalated structure, especially after the fourth cycle. Further, the addition of PP-g-MA promoted the development of intercalated/exfoliated silicate layers in the PP matrix after the second cycle. These results are in agreement with TEM observations indicating an improved silicate dispersion in the polymer matrix with reprocessing cycles displaying a morphology with both intercalated/exfoliated structures. The initial storage modulus (G′) of the nanocomposites, which was highly improved in presence of PP-g-MA seems to be less affected by reprocessing cycles at very low frequencies exhibiting a quasi-plateau compared to pristine PP/OMMT and PP. In contrast, the complex viscosity was found to decrease for the whole samples indicating that the main effect of reprocessing was a decrease in the molecular weight. Moreover, the thermal and mechanical properties of the nanocomposites were significantly reduced after the first cycle; nevertheless they remained almost unchanged during recycling. No change in the chemical structure was observed in the FT-IR spectra for both the nanocomposites and neat PP samples after 4 cycles.  相似文献   

14.
Nylon 6 (PA6)/clay hybrids have been prepared using a direct melt intercalation technique by two processes. One is PA6 melt-mixing with modified clay, the other is PA6 melt-mixing with natural (Na+ base) clay using an ammonium salt bearing long alkyl chains as a polymer/clay reactive compatibilizer. Their structure and flammability properties are characterized by X-ray diffraction, transmission electron microscopy and cone calorimeter experiments. The results of the cone calorimeter experiments show that hybrids made by these two processes have a lower heat release rate peak and higher thermal stability than that of original PA6. Meanwhile, X-ray diffraction was used to investigate PA6/clay hybrids with various cooling histories from the melt, including medium-rate cooling (air cooling) and rapid cooling (water-quenched). In contrast to pure PA6 dominated by the α phase, the addition of clay silicate layers by these two methods favors the formation of the γ crystalline phase in PA6/clay hybrids. Flammability and phase-transition studies confirm that silicate layers added by these two methods have a similar nanoeffect and nanodispersion in the PA6 matrix.  相似文献   

15.
An oligomerically-modified clay has been used to fabricate nanocomposites with styrenic polymers, such as polystyrene, high-impacted polystyrene, poly(styrene-co-acrylonitrile) and acrylonitrile-butadiene-styrene by melt blending. The clay dispersion was evaluated by X-ray diffraction and bright field transmission electron microscopy. All of the nanocomposites have a mixed delaminated/intercalated structure. The fire properties of nanocomposites were evaluated by cone calorimetry a nd the mechanical properties were also evaluated.  相似文献   

16.
刘晓播  邱光南 《高分子科学》2013,31(9):1271-1275
MDPE-g-MAH copolymers were prepared with MDPE (medium density polyethylene) and MAH (maleic anhydride) under different irradiation doses of high-energy electron accelerator, and FTIR spectra confirmed their structure. The effect of the different contents of MDPE-g-MAH copolymers on properties of MDPE/CaCO3 system is studied intensively. By adding 4 Phr (parts per hundred of resin) MDPE-g-MAH in MDPE/CaCO3 system under irradiation dose of 0.7 MGy, the tensile strength increases from 16.3 MPa to 19.9 MPa, and elongation at break increases from 437% to 518%. SEM images show the domain size of CaCO3 in MDPE-g-MAH systems becomes small. Definitely, MDPE-g-MAH copolymer could improve the compatibility of MDPE/CaCO3 system effectively.  相似文献   

17.
Fast and efficient determination of the optimal mechanical property of a polymer/CNT nanocomposite is crucial to develop polymer conductive nanocomposites. This work establishes a rheological approach to evaluate the super-toughness point of compatibilized high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites. Results illustrate that three types of HDPE/MWCNT nanocomposites exhibit obvious gel plateaus in the dynamic rheological curves and the gel points of nanocomposites with compatibilizer shift to the low MWCNTs loading. The super-toughness points of HDPE/MWCNT nanocomposites with compatibilizers show the correspondence with the gel points acquired from the rheological data, indicating that dynamic rheology is an effective way to determine the super-toughness points of HDPE/MWCNT nanocomposites with compatibilizers. Furthermore, unique network structure at the gel points is directly observed and the new mechanism of toughness is proposed. This study provides new insights for effective control of the structures and properties of polymer/CNT nanocomposites.  相似文献   

18.
Rheology and thermal stability of polylactide/clay nanocomposites   总被引:1,自引:0,他引:1  
Polylactide/clay nanocomposites (PLACNs) were prepared by melt intercalation. The intercalated structure of PLACNs was investigated using XRD and TEM. Both the linear and nonlinear rheological properties of PLACNs were measured by parallel plate rheometer. The results reveal that percolation threshold of the PLACNs is about 4 wt%, and the network structure is very sensitive to both the quiescent and the large amplitude oscillatory shear (LAOS) deformation. The stress overshoots in the reverse flow experiments were strongly dependent on the rest time and shear rate but shows a strain-scaling response to the startup of steady shear flow, indicating that the formation of the long-range structure in PLACNs may be the major driving force for the reorganization of the clay network. The thermal behavior of PLACNs was also characterized. However, the results show that with the addition of clay, the thermal stability of PLACNs decreases in contrast to that of pure PLA.  相似文献   

19.
In this paper pyridine and quinoline-containing salts were employed to modify montmorillonite. TGA analysis shows that the quinolinium modified clay has a higher thermal stability than the pyridinium modified clay. Polystyrene nanocomposites were prepared by in situ bulk polymerisation and direct melt blending using both clays. The X-ray diffraction and transmission electron microscopy results show the formation of intercalated structures. The 50% degradation temperature of the nanocomposites is increased and so is the amount of char from TGA analysis compared to the virgin polymer. Cone calorimetric results indicate that clay reduces the peak heat release rate and average mass loss rate and thus lowers the flammability of the polymer.  相似文献   

20.
Polyamide‐6 (PA6)/montmorillonite (MMT) nanocomposites toughened with maleated styrene/ethylene butylene/styrene (SEBS‐g‐MA) were prepared via melt compounding. Before melt intercalation, MMT was treated with an organic surfactant agent. Tensile and impact tests revealed that the PA6/4% MMT nanocomposite fractured in a brittle mode. The effects of SEBS‐g‐MA addition on the static tensile and impact properties of PA6/4% MMT were investigated. The results showed that the SEBS‐g‐MA addition improved the tensile ductility and impact strength of the PA6/4% MMT nanocomposite at the expenses of its tensile strength and stiffness. Accordingly, elastomer toughening represents an attractive route to novel characteristics for brittle clay‐reinforced polymer nanocomposites. The essential work of fracture (EWF) approach under impact drop‐weight conditions was used to evaluate the impact fracture toughness of nanocomposites toughened with an elastomer. Impact EWF measurements indicated that the SEBS‐g‐MA addition increased the fracture toughness of the PA6/4% MMT nanocomposite. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 585–595, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号