首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Two LnIII ions are sandwiched by dinuclear CoII building blocks derived from a tris‐triazamacrocyclic ligand bearing pendant carboxylic acid functionality, 1,3,5‐tris((4,7‐bis(2‐carboxyethyl)‐1,4,7‐triazacyclonon‐1‐yl)methyl)‐benzene (H6L), giving rising to two nanoscale heterometallic metal–organic cages formulated as [Co4Ln2(LH2.5)2(H2O)4]·(ClO4)6·NO3·nH2O [Ln = Dy, n = 12 ( 1 ); Ln = Yb, n = 9 ( 2 )], whose internal cavity accommodates a guest NO3? anion. Their hexanuclear cage‐like architectures are maintained both in solution and solid states as confirmed by mass spectrum as well as X‐ray diffraction experiments. These two cages display ligand‐based fluorescence emissions and therefore both were chosen to be operated as fluorescent chemosensors for the detection of nitroaromatic compounds. Attractively, these metal–organic cages allow highly selective and sensitive detection of picric acid (PA) over other nitroaromatics in solution and suspension, and the fluorescence resonance energy transfer (FRET) between the cage probes and PA is mainly responsible for the remarkable detection efficiency.  相似文献   

2.
Self‐assembly of Zn (II) or Cd (II) nitrates, flexible bis (pyridyl)‐diamine, as well as arenesulfonic acids, leads to the formation of ten coordination polymers, namely, [Zn(L1)(H2O)3]·2(p‐TS)·2H2O ( 1 ), [Zn(L1)(H2O)2]·2(p‐TS)·2H2O ( 2 ), [Zn(L1)2(p‐TS)2] ( 3 ), [Zn(H2L1)(H2O)4]·2(1,5‐NDS)·2H2O ( 4 ), [Zn(H2L2)(H2O)4]·2(1,5‐NDS)·4MeOH ( 5 ), [Cd(L1)(p‐TS)(NO3)]·H2O ( 6 ), [Cd(L1)(1,5 ‐NDS)0.5(H2O)]·0.5(1,5‐NDS)·H2O ( 7 ), [Cd(L2)(H2O)2]·(p‐TS)·(NO3)·3H2O ( 8 ), [Cd(L2)(1,5‐NDS)] ( 9 ) and [Cd(L2)(1,5‐NDS)]·MeOH ( 10 ) (L1 = N,N′‐bis (pyridin‐4‐ylmethyl) ethane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethy l)ethane‐1,2‐diamine, p‐HTS = p‐toluenesulfonic acid, 1,5‐H2NDS = 1,5‐naphthalene disulfonic acid), which have been characterized by elemental analysis, IR, TG, PL, powder and single‐crystal X‐ray diffraction. Complexes 1 , 4 , 5 and 6 present linear or zigzag chain structures accomplished by the interconnection of adjacent M (II) cations through L1 ligands or protonated H2L12+/H2L22+ cations, while complexes 2 , 3 and 8 show similar (4,4) layer motifs constructed from the connection of M (II) cations through L1 and L2. The same coordination modes of L1 and L2 in complexes 7 and 9 join adjacent Cd (II) cations to form double chain structures, which are further connected by bis‐monodentate 1,5‐NDS2? dianions into different (6,3) and (4,4) layer motifs. The L2 molecules in complex 10 join adjacent Cd (II) cations together with 1,5‐NDS2? dianions to form 3D network with hxl topology. Therefore, the diverse coordination modes of the bis (pyridyl) ligand with chelating spacer and the feature of different arenesulfonate anions can effectively influence the architectures of these complexes. Luminescent investigation reveals that the emission maximum of these complexes varies from 374 to 448 nm in the solid state at room temperature, in which complexes 4 , 5 , 7 , 9 and 10 show average luminescence lifetimes from 7.20 to 14.82 ns. Moreover, photocatalytic properties of complexes 7–10 towards Methylene blue under Xe lamp irradiation are also discussed.  相似文献   

3.
A new sensitive and simple kinetic method is developed for determination of traces of ascorbic acid based on its activated effect on oxidation of trisodium‐2‐hydroxy‐1‐(4‐sulphonato‐1‐naphthylazo)naphthalene‐6,8‐disulphonato (red artificial color Ponceau 4R) by hydrogen peroxide, in the presence of Cu(II) as catalyst, in borate buffer. The reaction is followed spectrophotometrically by tracing the oxidation product at 478.4 nm within 1 min after addition of H2O2. The optimum reaction conditions are: borate buffer (pH = 11.00), Ponceau 4R (9.6·10?6 mol/L), H2O2 (2·10?2 mol/L), Cu(II) (8·10?7 mol/L) at 22 °C. Following this procedure, ascorbic acid can be determined with a linear calibration graph up to 1.76 ng/mL and a detection limit of 0.28, based on 3S criterion. The relative error ranges between 6.77‐1.66% for the concentration interval of ascorbic acid 1.76‐17.61 ng/mL. The effects of certain foreign ions upon the reaction rate were determined for an assessment of the selectivity of the method. The method was applied for determination of ascorbic acid in pharmaceutical samples, and spectrophotometric method was used like an comparative method.  相似文献   

4.
An imidazole functionalized metal–organic framework (MOF), [Cu(HL)(H2O)]·(H2O)·(DMA) ( HBU-166 , H3L = 4,4′,4″-(1H-imidazole-2,4,5-triyl)tribenzoic acid, DMA = N,N-dimethylacetamide) was synthesized and characterized by single-crystal X-ray diffraction. HBU-166 was observed as a two-dimensional MOF and showed good stability in water, an acidic solution (pH = 4), and an alkaline solution (pH = 9). HBU-166 exhibited ligand-based luminescence with a blue shift, which could be attributed to the coordination effect. Moreover, HBU-166 could be applied to detect nitroaromatic compounds (NACs) and metal ions in water with preferable selectivity and sensitivity. In particular, HBU-166 could be used as a promising luminescent sensor for picric acid (PA) with enhancement of emission intensity. The mechanism for PA detection likely involved electron transfer and weak interaction between ligand and electron-deficient of NACs at the beginning to increase the emission intensity. Additionally, HBU-166 exhibited excellent selectivity in the sensing of 4-nitrophenol and Fe3+ through fluorescence quenching.  相似文献   

5.
A new coordination polymer (CP), namely, [Cd(HL)(4,4′‐bipy)] ( 1 ) (H3L = 4‐(5‐carboxy‐pyridine‐3‐yloxy)‐phthalic acid, 4,4′‐bipy = 4,4′‐bipyridine), was synthesized employing a V‐shaped asymmetric tricarboxylic acid ligand under hydrothermal condition. Single‐crystal X‐ray diffraction analysis indicates that compound 1 exhibits a novel three‐dimensional (3D) framework with (3, 5)‐connected (63)(69 · 8) topology. Meanwhile, it shows high selectivity and sensitivity for oxoanion pollutants CrO42–, Cr2O72–, and MnO4 anions in aqueous solutions with detection limits of 4.12 × 10–6 M, 1.75 × 10–6 M, and 6.47 × 10–7 M, respectively. The high selectivity and low detection limit indicate that the compound is promising functional luminescence probe for CrO42–, Cr2O72–, and MnO4. The mechanisms of the quenching effect and sensing properties were discussed in detail.  相似文献   

6.
Two new ternary metal coordination polymers (CPs), namely, {[Co2(BTC)(L)]·0.25H2O}n ( 1 ) and [Ag(HIPA)(L)]n ( 2 ) (H4BTC = 1,2,3,4-butanetetracarboxylic acid, H2IPA = isophthalic acid, L = 1,6-bis(5,6-dimethylbenzimidazol-1-yl)hexane) were hydrothermally synthesized and characterized by elemental analysis, infrared spectroscopy, single-crystal X-ray diffraction, and powder X-ray diffraction (PXRD). 1 exhibits unusual 2D network with point symbol {43.63}2{46.66.73}. 2 possesses 1D chain structure which is further extended into a 3D supramolecular network via O–H···O hydrogen-bonding and ππ stacking interactions. 1 and 2 can selectively detect benzaldehyde (BZH), Fe3+ (just 1 ) and Cr2O72− (just 2 ) ions in water via the luminescence quenching process. Furthermore, the photocatalytic activities of two CPs were evaluated for degradation of methylene blue (MB) and methyl violet (MV) under UV irradiation.  相似文献   

7.
8.
Six novel organotin (IV) complexes, [(Me3Sn)2(H2O)2L] ( 1 ), [(R3Sn)2L]n (R = Me 2 , R = n‐Bu 3 ), [(Ph3Sn)2L] ( 4 ), [Me2SnL]n ( 5 ), [(Me2Sn)2L(μ3‐O)]n ( 6 ) have been designed and synthesized by the reactions of 4,4′‐oxybisbenzoic acid (H2L) and triorganotin (IV) chloride or oxide. All the complexes have been characterized by elemental analysis, FT‐IR, NMR, ESI‐Mass, PXRD and X‐ray crystallography. The single crystal diffraction reveals that complexes 1 and 4 represent dinuclear tin monomers. Complexes 2 and 3 display 2D network structure and 2D corrugated framework respectively, which both contain tetranuclear 36‐membered macrocycles. Furthermore, 2D structures are linked into a 3D supramolecular structures through intermolecular C‐H ··· π interactions. Complex 5 shows 1D infinite helical chain and further constructs 3D ladder supramolecular architecture through additional Sn ··· O and C‐H ··· O intermolecular interactions. Complex 6 displays 1D infinite polymeric chain containing 28‐membered macrocyclic ring. Preliminarily in vitro cytostatic activity studies on cervical carcinoma cell lines (HeLa) and hepatocellular carcinoma cell lines (HepG‐2) by MTT assay for some complexes reveal that complexes 3 and 4 exhibit high cytostatic activity. Further, complexes 3 and 4 were selected to investigate interactions of bovine serum albumin (BSA) by fluorescence quenching spectra and synchronous fluorescence spectra, which indicates that the complexes could quench the intrinsic fluorescence of BSA in a static quenching process.  相似文献   

9.
Eight metal(II) complexes based on imidazo[4, 5‐f]‐1, 10‐phenanthroline (HIMP) and bridging dicarboxylato ligands such as 4, 4′‐biphenyldicarboxylic acid (H2BPDC), 1, 4‐benzenedicarboxylic acid (H2BDC), thiophene‐2, 5‐dicarboxylic acid (H2TDC), and 2, 6‐naphthalenedicarboxylic acid (H2NDC) were hydrothermally synthesized and structurally characterized by single‐crystal X‐ray diffraction. Complexes 1 , 3 , 6 , and 7 are molecular dinuclear metal complexes. Complexes 2 , 4 , and 5 exhibit chain‐like structures. Compound 8 shows a novel 3D architecture, in which ZnII dimers are connected by four NDC2– anions. In the metal(II) complexes, HIMP exhibits a similar chelating coordination mode. Different π ··· π stacking interactions are observed in the complexes. The emission of HIMP is completely quenched in complexes 1 – 4 due to the strong π ··· π stacking interactions in the structures. Complexes 5 – 8 exhibit different photoluminescence properties. Firstly, we quantitatively investigated the effect of the strong HIMP–HIMP stacking interactions on the emission quenching of HIMP in the metal complexes. It was found that a higher extent of π ··· π stacking interactions in the complexes resulted in a higher extent of the emission quenching of HIMP. The introduction of aromatic conjugated carboxylate groups into metal(II)‐HIMP complexes changed the extent of the strong π ··· π stacking interactions in the structures and thus the photoluminescence properties of the complexes.  相似文献   

10.
Six mono/double‐layered 2D and three 3D coordination polymers were synthesized by a self‐assembly reaction of Zn (II) salts, organic dicarboxylic acids and L1/L2 ligands. These polymeric formulas are named as [Zn(L1)(C4H2O4)0.5 (H2O)]n·0.5n(C4H2O4)·2nH2O ( 1 ), [Zn2(L2)(C4H2O4)2]n·2nH2O ( 2 ), [Zn(L1)(m‐BDC)]n ( 3 ), [Zn2(L2)(m‐BDC)2]n·2nH2O ( 4 ), [Zn3(L1)2(p‐BDC)3(H2O)4]n·2nH2O ( 5 ), [Zn2(OH)(L2) (p‐BDC)1.5]n ( 6 ), [Zn2(L1)(p‐BDC)2]n·5nH2O ( 7 ), [Zn2(L2)(p‐BDC)2]n·3nH2O ( 8 ) and [Zn2(L1)(C4H4O4)1.5(H2O)]n·n(ClO4nH2O ( 9 ) [L1 = N,N′‐bis (pyridin‐4‐ylmethyl)propane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethyl)propane‐1,2‐ diamine, m‐BDC2? = m‐benzene dicarboxylate, p‐BDC2? = p‐benzene dicarboxylate]. Meanwhile, these polymers have been characterized by elemental analysis, infrared, thermogravimetry (TG), photoluminescence, powder and single‐crystal X‐ray diffraction. Polymers 1–6 present mono‐ and double (4,4)‐layer motifs accomplished by L1/L2 ligands with diverse conformations and organic dicarboxylates, and the layer thickness locates in the range of 5.8–15.0 Å. In three 3D polymers, the L1 and L2 molecules adopt the same cis‐conformations and join adjacent Zn (II) cations together with p‐BDC2? or succinate, giving rise to different binodal (4,4)‐c nets with (4.52.83)(4.53.72) ( 7 ), pts ( 8 ) topology and twofold interpenetrated binodal (5,5)‐c nets with (32.44.52.62)(3.43.52.64) ( 9 ). Therefore, the diverse conformations of the two bis (pyridyl)‐propane‐1,2‐diamines and the feature of different organic dicarboxylate can effectively influence the architectures of these polymers. Powder X‐ray diffraction patterns demonstrate that these bulk solid polymers are pure phase. TG analyses indicate that these polymers have certain thermal stability. Luminescent investigation reveals that the emission maximum of these polymers varies from 402 to 449 nm in the solid state at room temperature. Moreover, 1 , 3 and 5–8 show average luminescence lifetimes from 8.81 to 16.30 ns.  相似文献   

11.
Four metal‐organic coordination polymers [Co2(L)3(nipa)2]·6H2O ( 1 ), [Cd(L)(nipa)]·3H2O ( 2 ), [Co(L) (Hoxba)2] ( 3 ) and [Ni2(L)2(oxba)2(H2O)]·1.5L·3H2O ( 4 ) were synthesized by reactions of the corresponding metal(II) salts with the rigid ligand 1,4‐bis(1H‐imidazol‐4‐yl)benzene (L) and different derivatives of 5‐nitroisophthalic acid (H2nipa) and 4,4′‐oxybis(benzoic acid) (H2oxba), respectively. The structures of the complexes were characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction. Complexes 1 and 3 have the same one‐dimensional (1D) chain while 2 is a 6‐connected twofold interpenetrating three‐dimensional (3D) network with α ‐Po 412·63 topology based on the binuclear CdII subunits. Compound 4 features a puckered two‐dimensional (2D) (4,4) network, and the large voids of the packing 2D nets have accommodated the uncoordinated L guest molecules. An abundant of N–H···O, O–H···O and C–H···O hydrogen bonding interactions exist in complexes 1–4 , which contributes to stabilize the crystal structure and extend the low‐dimensional entities into high‐dimensional frameworks. Lastly, the photoluminiscent properties of compounds 2 were also investigated.  相似文献   

12.
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro‐compounds, excessive Fe3+ and MnO4?, is crucial for human health and environmental protection. Here, a new terbium(III)–organic framework, namely [Tb(TATAB)(H2O)]?2H2O ( Tb‐MOF , H3TATAB=4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐m‐aminobenzoic acid), was assembled and characterized. The Tb‐MOF exhibits a water‐stable 3D bnn framework. Due to the existence of competitive absorption, Tb‐MOF has a high selectivity for detecting Fe3+, MnO4?, 4‐nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb‐MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII‐based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro‐compounds, and antibiotics simultaneously.  相似文献   

13.
A surface‐renewable tris(1, 10‐phenanthroline‐5, 6‐dione) iron (D) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD‐modified electrode presented pH‐dependent voltammetric behavior, and its peak currents were diffusion‐controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0.4). In the presence of iodate, dear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 × 10?6–1 × 10?2 mol/L, 7.448 μA·L/ mmol, 1.2 × 10?6 mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface‐renewal by simple mechanical polishing.  相似文献   

14.
The unsymmetrical bis (arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐t‐BuC6H2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N‐aryl group bedecked with ortho‐substituted fluorobenzhydryl groups, have been employed in the preparation of the corresponding five‐coordinate cobalt (II) chelates, LCoCl2 ( Co1 – Co5 ); the symmetrical comparator [2,6‐{CMeN(2,6‐(4‐FC6H4)2CH)2–4‐t‐BuC6H2}2C5H3N]CoCl2 (Co6) is also reported. All cobaltous complexes are paramagnetic and have been characterized by 1H/19F NMR spectroscopy, FT‐IR spectroscopy and elemental analysis. The molecular structures of Co3 and Co6 highlight the different degrees of steric protection given to the metal center by the particular N‐aryl group combination. Depending on the aluminoxane co‐catalyst employed to activate the cobalt precatalyst, distinct variations in thermal stability and activity of the catalyst towards ethylene polymerization were exhibited. In particular with MAO, the resultant catalysts reached their optimal performance at 70 °C delivering high activities of up to 10.1 × 106 g PE (mol of Co)?1 h?1 with Co1  >  Co4  >  Co2  >  Co5  >  Co3 >>  Co6 . On the other hand, using MMAO, the catalysts operate most effectively at 30 °C but are by comparison less productive. In general, the polyethylenes were highly linear, narrowly disperse and displayed a wide range of molecular weights [Mw range: 18.5–58.7 kg mol?1 (MAO); 206.1–352.5 kg mol?1 (MMAO)].  相似文献   

15.
A series of six new Zn (II) compounds, viz., [Zn(HLASA)2(Py)2] ( 1 ), [Zn(HLMASA)2(Py)2] ( 2 ), [Zn(HLMASA)2(4‐MePy)2] ( 3 ), [Zn(HLCASA)2(4‐MePy)2] ( 4 ), [Zn(HLBASA)2(Py)2] ( 5 ), [Zn(HLBASA)2(4‐MePy)2] ( 6 ) and representative Cu (II) and Cd (II) complexes, viz., [Cu(HLASA)2(Py)2(H2O)] ( 7 ) and [Cd(HLBASA)2(Py)3] ( 8 ) [(HLXASA)? = para‐substituted 5‐[(E)‐2‐(aryl)‐1‐diazenyl]‐2‐hydroxybenzoate with X = H (ASA), Me (MASA), Cl (CASA) or Br (BASA); Py = pyridine; 4‐MePy = 4‐methylpyridine] have been synthesized and characterized by spectroscopic techniques and single‐crystal X‐ray diffraction analysis. The structural characterization of the compounds revealed distorted tetrahedral ( 1 – 6 ), square‐pyramidal ( 7 ) and pentagonal‐bipyramidal ( 8 ) coordination geometries around the metal atom, in which the aryl‐substituted diazosalicylate ligands are coordinated only through the oxygen atoms of carboxylate groups, either in an anisobidentate or isobidentate mode; meanwhile, the 2‐hydroxy groups of the monoanionic ligand (HLXASA)? are involved only in intramolecular O‐H···O hydrogen bonds with the carboxylate function. In the crystal structures of 1 – 8 , the complex molecules are assembled by π‐stacking interactions giving mostly infinite 1D strands. The intermolecular binding in the solid state structures is accomplished by diverse additional non‐covalent contacts including C‐H···O, C‐H···N, C‐H···π, C‐H···Br, O···Br, Br···π and van der Waals contacts. Although the primary and secondary ligands in the Zn (II) complex series 1 – 6 carry different substituents at the periphery (X = H, Me, Cl, Br for (HLXASA)? and R = H, Me for 4‐Py‐R), five of the crystal structures were isostructural. Additionally, the antimicrobial activity of the pro‐ligands H2LXASA and their Zn (II), Cu (II) and Cd (II) compounds were studied in a comparative manner, showing high sensitivity (IZD ≥ 20) against Bacillus subtilis.  相似文献   

16.
Crystals of maleates of three amino acids with hydrophobic side chains [L‐leucenium hydrogen maleate, C6H14NO2+·C4H3O4, (I), L‐isoleucenium hydrogen maleate hemihydrate, C6H14NO2+·C4H3O4·0.5H2O, (II), and L‐norvalinium hydrogen maleate–L‐norvaline (1/1), C5H11NO2+·C4H3O4·C5H12NO2, (III)], were obtained. The new structures contain C22(12) chains, or variants thereof, that are a common feature in the crystal structures of amino acid maleates. The L‐leucenium salt is remarkable due to a large number of symmetrically non‐equivalent units (Z′ = 3). The L‐isoleucenium salt is a hydrate despite the fact that L‐isoleucine is a nonpolar hydrophobic amino acid (previously known amino acid maleates formed hydrates only with lysine and histidine, which are polar and hydrophilic). The L‐norvalinium salt provides the first example where the dimeric cation L‐Nva...L‐NvaH+ was observed. All three compounds have layered noncentrosymmetric structures. Preliminary tests have shown the presence of the second harmonic generation (SGH) effect for all three compounds.  相似文献   

17.
Reactions of the isomeric ligands Hpztza [Hpztza = 5‐(2‐pyrazinyl)tetrazole‐2‐acetic acid] and Hpmtza [Hpmtza = 5‐(2‐pyramidyl)tetrazole‐2‐acetic acid] with TbCl3 · 6H2O or DyCl3 · 6H2O under solvothermal conditions afforded four mononuclear complexes, [Ln(pztza)2(H2O)6] · pztza · 3H2O [Ln = Tb ( 1 ), Dy ( 2 )] and [Ln(pmtza)2(H2O)6] · Cl · 3H2O [Ln = Tb ( 3 ), Dy ( 4 )]. The compounds were characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. X‐ray diffraction analyses reveal that all structures are mononuclear. The four compounds are self‐assembled to form three‐dimensional networks by hydrogen bonds. The different positions of the nitrogen atom control the coordination mode of the ligands and further influence the crystal structures. Furthermore, the luminescence properties were also investigated at room temperature in the solid state.  相似文献   

18.
The first coordination polymer of 2,2′‐((4‐carboxymethyl‐1,3‐phenylene)bis(oxy)) diacetic acid (H3L) with europium(III) ion, [Eu(L)(H2O)]·3H2O ( 1 ), has been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a 3D coordination polymer with helical chain and rtl topology of the point symbol (4·62)2(42·610·83) based on [Eu2(COO)4] as secondary building unit (SBU). Furthermore, the luminescent and magnetic properties of complex 1 are studied.  相似文献   

19.
A series of 3D d–f heterometallic coordination polymers, {[Ln2Zn(Pzdc)4(H2O)6] · 2H2O}n [Ln = La ( 1 ), Pr ( 2 ), Nd ( 3 ), Sm ( 4 ), Eu ( 5 ), Gd ( 6 ), Tb ( 7 ), Dy ( 8 )] (H2Pzdc = 2,3‐pyrazine dicarboxylic acid), were synthesized by one‐pot reactions under hydrothermal conditions. X‐ray crystallographical analysis and powder X‐ray diffraction analysis reveal that the complexes 1 – 8 are isostructural and adopt a multi‐parallel quadrilateral channel network structure with {4.6 · 2}2{4 · 2.6 · 2.8 · 2}{6 · 3}2{6 · 5.8}2 topology, in which the central LnIII ion is nine‐coordinate by four oxygen atoms and two nitrogen atoms from four ligands and three oxygen atoms from three coordinated H2O molecules and the central ZnII ion is six‐coordinate by four oxygen atoms and two nitrogen atoms from four ligands. Moreover, the photophysical properties related to the electronic transition for complexes 4 , 5 , 7 , and 8 were investigated by the excitation and emission spectra as well as the emission lifetimes.  相似文献   

20.
《中国化学快报》2023,34(3):107291
Herein, we report a new metal-organic framework with an AIE ligand (H4TCPP = 2,3,5,6-tetra-(4-carboxyphenyl)pyrazine) and Mg2+ ions, that is, [Mg2(H2O)4TCPP]·DMF·5CH3CN (Mg-TCPP, TCPP = tetra-(4-carboxyphenyl)pyrazine) for detection of nitroaromatic explosives. Due to the coordination effect and restricted intramolecular rotation, Mg-TCPP exhibits bright blue light. As a fluorescent sensor, Mg-TCPP exhibits high selectivity and sensitivity for sensing 2,4,6-trinitrophenol (TNP) by quenching behaviors with the Stern-Volmer quenching constant (KSV) of 3.63×105 L/mol and achieves the low limit of detection of 25.6 ppb, which is beyond most of the previously reported fluorescent materials. Notably, the portable Mg-TCPP films are prepared and it can be used for rapid and sensitive TNP detection in a variety of environments including organic solvent and aqueous solution. Moreover, TNP vapor can be detected within 3 min by naked eye and the film could be regenerated under simple solvent cleaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号