首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

2.
Low‐dimensional lead halide perovskite materials recently have drawn much attention owing to the intriguing broadband emissions; however, the toxicity of lead will hinder their future development. Now, a lead‐free (C4H14N2)2In2Br10 single crystal with a unique zero‐dimensional (0D) structure constituted by [InBr6]3? octahedral and [InBr4]? tetrahedral units is described. The single crystal exhibits broadband photoluminescence (PL) that spans almost the whole visible spectrum with a lifetime of 3.2 μs. Computational and experimental studies unveil that an excited‐state structural distortion in [InBr6]3? octahedral units enables the formation of intrinsic self‐trapped excitons (STEs) and thus contributing the broad emission. Furthermore, femtosecond transient absorption (fs‐TA) measurement reveals that the ultrafast STEs formation together with an efficient intersystem crossing has made a significant contribution to the long‐lived and broad STE‐based emission behavior.  相似文献   

3.
Considering the instability and low photoluminescence quantum yield (PLQY) of blue‐emitting perovskites, it is still challenging and attractive to construct single crystalline hybrid lead halides with highly stable and efficient blue light emission. Herein, by rationally introducing d10 transition metal into single lead halide as new structural building unit and optical emitting center, we prepared a bimetallic halide of [(NH4)2]CuPbBr5 with new type of three‐dimensional (3D) anionic framework. [(NH4)2]CuPbBr5 exhibits strong band‐edge blue emission (441 nm) with a high PLQY of 32 % upon excitation with UV light. Detailed photophysical studies indicate [(NH4)2]CuPbBr5 also displays broadband red light emissions derived from self‐trapped states. Furthermore, the 3D framework features high structural and optical stabilities at extreme environments during at least three years. To our best knowledge, this work represents the first 3D non‐perovskite bimetallic halide with highly efficient and stable blue light emission.  相似文献   

4.
The lead‐free halide perovskite A3Sb2Br9 is utilized as a photocatalyst for the first time for C(sp3)?H bond activation. A3Sb2Br9 nanoparticles (A3Sb2Br9 NPs) with different ratios of Cs and CH3NH3 (MA) show different photocatalytic activities for toluene oxidation and the photocatalytic performance is enhanced when increasing the amount of Cs. The octahedron distortion caused by A‐site cations can change the electronic properties of X‐site ions and further affect the electron transfer from toluene molecules to Br sites. After the regulation of A‐site cations, the photocatalytic activity is higher with A3Sb2Br9 NPs than that with classic photocatalysts (TiO2, WO3, and CdS). The main active species involved in photocatalytic oxidation of toluene are photogenerated holes (h+) and superoxide anions (.O2?). The octahedron distortion by A‐site cations affecting photocatalytic activity remains unique and is also a step forward for understanding more about halide‐perovskite‐based photocatalysis. The relationship between octahedron distortion and photocatalysis can also guide the design of new photocatalytic systems involving other halide perovskites.  相似文献   

5.
Recently, low‐dimensional organic‐inorganic hybrid metal halide perovskites acting as single‐component white‐light emitting materials have attracted extensive attention, but most studies concentrate on hybrid lead perovskites. Herein, we present two isomorphic zero‐dimensional (0D) hybrid cadmium perovskites, (HMEDA)CdX4 (HMEDA=hexamethylenediamine, X=Cl ( 1 ), Br ( 2 )), which contain isolated [CdX4]2? anions separated by [HMEDA]2+ cations. Under UV light excitation, both compounds display broadband bluish white‐light emission (515 nm for 1 and 445 nm for 2 ) covering the entire visible light spectrum with sufficient photophysical stabilities. Remarkably, compound 2 shows a high color rendering index (CRI) of 83 enabling it as a promising candidate for single‐component WLED applications. Based on the temperature‐dependent, powder‐dependent and time‐resolved PL measurements as well as other detailed studies, the broadband light emissions are attributed to self‐trapped excitons stemming from the strong electron‐phonon coupling.  相似文献   

6.
Zero‐dimensional (0D) lead‐free perovskites have unique structures and optoelectronic properties. Undoped and Sb‐doped all inorganic, lead‐free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb‐doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb‐doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high‐performance 0D lead‐free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

7.
Pressure-induced emission (PIE) associated with self-trapping excitons (STEs) in low-dimensional halide perovskites has attracted great attention for better materials-by-design. Here, using 2D layered double perovskite (C6H5CH2CH2NH3+)4AgBiBr8 as a model system, we advance a fundamental physicochemical mechanism of the PIE from the perspective of carrier dynamics and excited-state behaviors of local lattice distortion. We observed a pressure-driven STE transformation from dark to bright states, corresponding a strong broadband Stokes-shifted emission. Further theoretical analysis demonstrated that the suppressed lattice distortion and enhanced electronic dimensionality in the excited-state play an important role in the formation of stabilized bright STEs, which could manipulate the self-trapping energy and lattice deformation energy to form an energy barrier between the potential energy curves of ground- and excited-state, and enhance the electron-hole orbital overlap, respectively.  相似文献   

8.
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3.  相似文献   

9.
Cesium‐lead halide perovskites (e.g. CsPbBr3) have gained attention because of their rich physical properties, but their bulk ferroelectricity remains unexplored. Herein, by alloying flexible organic cations into the cubic CsPbBr3, we design the first cesium‐based two‐dimensional (2D) perovskite ferroelectric material with both inorganic alkali metal and organic cations, (C4H9NH3)2CsPb2Br7 ( 1 ). Strikingly, 1 shows a high Curie temperature (Tc=412 K) above that of BaTiO3 (ca. 393 K) and notable spontaneous polarization (ca. 4.2 μC cm?2), triggered by not only the ordering of organic cations but also atomic displacement of inorganic Cs+ ions. To our knowledge, such a 2D bilayered Cs+‐based metal–halide perovskite ferroelectric material with inorganic and organic cations is unprecedented. 1 also shows photoelectric semiconducting behavior with large “on/off” ratios of photoconductivity (>103).  相似文献   

10.
Inorganic, lead-free metal halides are widely sought after following the rise of the halide perovskites as outstanding optoelectronic materials, due to their enhanced stability and reduced toxicity. Herein, we report on the solvothermal synthesis of Rb7Sb3Br16, which exhibits a 0D structure comprised of [SbBr6]3− octahedra and edge-sharing bioctahedra [Sb2Br10]4− dimers that order into layers along the c-axis. This all-inorganic material is air-stable and exhibits weak orange photoluminescence (PL) at room temperature. Low-temperature PL and PL excitation (PLE) measurements reveal the presence of two distinct emission bands that originate from these structural units, with the high-energy emission quenching as temperature rises beyond 150 K. We are also able to obtain Rb7Bi3Br16 and Rb7Bi3I16 which both crystallize in orthorhombic symmetry, with Rb7Bi3Br16 presenting weak low-temperature luminescence while Rb7Bi3I16 is non-luminescent. This work expands the library of emissive inorganic metal halides and provides further evidence for the efficacy of low-dimensional Sb−X luminescent centers based on octahedral and edge-sharing [Sb2X10]4− dimers.  相似文献   

11.
Inorganic–organic hybrid perovskites, especially two‐dimensional (2D) layered halide perovskites, have attracted significant attention due to their unique structures and attractive optoelectronic properties, which open up a great opportunity for next‐generation photosensitive devices. Herein, we report a new 2D bilayered inorganic–organic hybrid perovskite, (C6H13NH3)2(NH2CHNH2)Pb2I7 ( HFA , where C6H13NH3+ is hexylaminium and NH2CHNH2+ is formamidinium), which exhibits a remarkable photoresponse under broadband light illumination. Structural characterizations demonstrate that the 2D perovskite structure of HFA is constructed by alternant stacking of inorganic lead iodide bilayered sheets and organic hexylaminium layers. Optical absorbance measurements combined with density functional theory (DFT) calculations suggest that HFA is a direct band gap semiconductor with a narrow band gap (Eg) of ≈2.02 eV. Based on these findings, photodetectors based on HFA crystal wafer are fabricated, which exhibit fascinating optoelectronic properties including large on/off current ratios (over 103), fast response speeds (τrise=310 μs and τdecay=520 μs) and high responsivity (≈0.95 mA W?1). This work will contribute to the design and development of new two‐dimensional bilayer inorganic–organic hybrid perovskites for high‐performance photosensitive devices.  相似文献   

12.
Two‐dimensional (2D) halide perovskites have attracted significant attention due to their compositional flexibility and electronic diversity. Understanding the structure–property relationships in 2D double perovskites is essential for their development for optoelectronic applications. In this work, we observed the emergence of pressure‐induced emission (PIE) at 2.5 GPa with a broad emission band and large Stokes shift from initially nonfluorescent (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). The emission intensity increased significantly upon further compression up to 8.2 GPa. Moreover, the band gap narrowed from the starting 2.61 eV to 2.19 eV at 25.0 GPa accompanied by a color change from light yellow to dark yellow. Analysis of combined in situ high‐pressure photoluminescence, absorption, and angle‐dispersive X‐ray diffraction data indicates that the observed PIE can be attributed to the emission from self‐trapped excitons. This coincides with [AgBr6]5? and [BiBr6]3? inter‐octahedral tilting which cause a structural phase transition. High‐pressure study on (BA)4AgBiBr8 sheds light on the relationship between the structure and optical properties that may improve the material's potential applications in the fields of pressure sensing, information storage and trademark security.  相似文献   

13.
Low‐dimensional luminescent lead halide perovskites have attracted tremendous attention for their fascinating optoelectronic properties, while the toxicity of lead is still considered a drawback. Herein, we report a novel lead‐free zero‐dimensional (0D) indium‐based perovskite (Cs2InBr5?H2O) single crystal that is red‐luminescent with a high photoluminescence quantum yield (PLQY) of 33 %. Experimental and computational studies reveal that the strong PL emission might originate from self‐trapping excitons (STEs) that result from an excited‐state structural deformation. More importantly, the in situ transformation between hydrated Cs2InBr5?H2O and the dehydrated form is accompanied with a switchable dual emission, which enables it to act as a PL water‐sensor in humidity detection or the detection of traces of water in organic solvents.  相似文献   

14.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

15.
The unique optoelectronic properties and promising photovoltaic applications of organolead halide perovskites have driven the exploration of facile strategies to synthesize organometal halide perovskites and corresponding hybrid materials and devices. Currently, the preparation of CH3NH3PbBr3 perovskite nanowires, especially those with porous features, is still a great challenge. An efficient self‐template‐directed synthesis of high‐quality porous CH3NH3PbBr3 perovskite nanowires in solution at room temperature using the Pb‐containing precursor nanowires as both the sacrificial template and the Pb2+ source in the presence of CH3NH3Br and HBr is now presented. The initial formation of CH3NH3PbBr3 perovskite layers on the surface of the precursor nanowires and the following dissolution of the organic component of the latter led to the formation of mesopores and the preservation of the 1D morphology. Furthermore, the perovskite nanowires are potential materials for visible‐light photodetectors with high sensitivity and stability.  相似文献   

16.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

17.
Very little is known about the realm of solid‐state metal halide compounds comprising two or more halometalate anions. Such compounds would be of great interest if their optical and electronic properties could be rationally designed. Herein, we report a new example of metal halide cluster‐assembled compound (C9NH20)9[Pb3Br11](MnBr4)2, featuring distinctly different anionic polyhedra, namely, a rare lead halide cluster [Pb3Br11]5? and [MnBr4]2?. In accordance with its multinary zero‐dimensional (0D) structure, this compound is found to contain two distinct emission centers, 565 nm and 528 nm, resulting from the formation of self‐trapped excitons and 4T16A1 transition of Mn2+ ions, respectively. Based on the high durability of (C9NH20)9[Pb3Br11](MnBr4)2 upon light and heat, as well as high photoluminescence quantum yield (PLQY) of 49.8 % under 450 nm blue light excitation, white light‐emitting diodes (WLEDs) are fabricated, showcasing its potential in backlight application.  相似文献   

18.
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three‐dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2‐azaniumylethyl)trimethylphosphanium [tetra‐μ‐bromido‐plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two‐dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ~2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.  相似文献   

19.
The secondary building units in metal–organic frameworks (MOFs) are commonly well‐defined metal–oxo clusters or chains with very limited structural strain. Herein, the structurally deformable haloplumbate units that are often observed in organolead halide perovskites have been successfully incorporated into MOFs. The resultant materials are a rare class of isoreticular MOFs exhibiting large Stokes‐shifted broadband white‐light emission, which is probably induced by self‐trapped excitons from electron–phonon coupling in the deformable, zigzag [Pb2X3]+ (X=Cl, Br, or I) chains. In contrast, MOFs with highly symmetric, robust haloplumbate chains only exhibit narrow UV–blue photoemission. The designed MOF‐based intrinsic white‐light photoemitters have a number of advantages over hybrid inorganic–organic perovskites in terms of stability and tunability, including moisture resistance, facile functionalization of photoactive moieties onto the organic linkers, introduction of luminescent guests.  相似文献   

20.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号