首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite lead halides (CH3NH3PbI3) have recently taken a promising position in photovoltaics and optoelectronics because of remarkable semiconducting properties and possible ferroelectricity. However, the potential toxicity of lead arouses great environmental concern for widespread application. A new chemically tailored lead‐free semiconducting hybrid ferroelectric is reported, N‐methylpyrrolidinium)3Sb2Br9 ( 1 ), which consists of a zero‐dimensional (0‐D) perovskite‐like anionic framework connected by corner‐ sharing SbBr6 coordinated octahedra. It presents a large ferroelectric spontaneous polarization of approximately 7.6 μC cm?2, as well as notable semiconducting properties, including positive temperature‐dependent conductivity and ultraviolet‐sensitive photoconductivity. Theoretical analysis of electronic structure and energy gap discloses a dominant contribution of the 0‐D perovskite‐like structure to the semiconducting properties of the material. This finding throws light on the rational design of new perovskite‐like hybrids, especially lead‐free semiconducting ferroelectrics.  相似文献   

2.
Piezoelectric materials are a class of important functional materials applied in high‐voltage sources, sensors, vibration reducers, actuators, motors, and so on. Herein, [(CH3)3S]3[Bi2Br9]( 1 ) is a brilliant semiconducting organic–inorganic hybrid perovskite‐type non‐ferroelectric piezoelectric with excellent piezoelectricity. Strikingly, the value of the piezoelectric coefficient d33 is estimated as ≈18 pC N?1. Such a large piezoelectric coefficient in non‐ferroelectric piezoelectric has been scarcely reported and is comparable with those of typically one‐composition non‐ferroelectric piezoelectrics such as ZnO (3pC N?1) and much greater than those of most known typical materials. In addition, 1 exhibits semiconducting behavior with an optical band gap of ≈2.58 eV that is lower than the reported value of 3.37 eV for ZnO. This discovery opens a new avenue to exploit molecular non‐ferroelectric piezoelectric and should stimulate further exploration of non‐ferroelectric piezoelectric due to their high stability and low loss characteristics.  相似文献   

3.
Cesium‐lead halide perovskites (e.g. CsPbBr3) have gained attention because of their rich physical properties, but their bulk ferroelectricity remains unexplored. Herein, by alloying flexible organic cations into the cubic CsPbBr3, we design the first cesium‐based two‐dimensional (2D) perovskite ferroelectric material with both inorganic alkali metal and organic cations, (C4H9NH3)2CsPb2Br7 ( 1 ). Strikingly, 1 shows a high Curie temperature (Tc=412 K) above that of BaTiO3 (ca. 393 K) and notable spontaneous polarization (ca. 4.2 μC cm?2), triggered by not only the ordering of organic cations but also atomic displacement of inorganic Cs+ ions. To our knowledge, such a 2D bilayered Cs+‐based metal–halide perovskite ferroelectric material with inorganic and organic cations is unprecedented. 1 also shows photoelectric semiconducting behavior with large “on/off” ratios of photoconductivity (>103).  相似文献   

4.
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3.  相似文献   

5.
Two-dimensional hybrid halide perovskites with single chiral and ferroelectricity together with various structural phase transitions provide the possibility for more diverse functional properties. Here, we present a 2D chiral hybrid halide perovskite ferroelectric, [C6H5(CH2)4NH3]2CdCl4 (4PBA−CdCl4, 4PBA=4-phenylbutylamine) that experiences two continuous phase transitions from centrosymmetric triclinic P to polar chiral monoclinic P2 and then to another centrosymmetric tetragonal P4/mmm with increasing temperature, accompanied by symmetry breaking, due to the prominent octahedral distortion and disorder transformation of organic 4PBA cations. In the polar chiral phase, 4PBA−CdCl4 gives a significant CD signal and has a moderate ferroelectric polarization of 0.35 μC/cm2. In addition, 4PBA−CdCl4 occupies a wide band gap of 4.376 eV that is chiefly contributed by the inorganic CdCl6 octahedron. This finding offers an alternative pathway for designing new phase transitions and related physical properties in hybrid halide perovskites and other hybrid crystals.  相似文献   

6.
As a momentum-independent spin configuration, persistent spin texture (PST) could avoid spin relaxation and play an advantageous role in spin lifetime. Nevertheless, manipulation of PST is a challenge due to the limited materials and ambiguous structure–property relationships. Herein, we present electrically switchable PST in a new 2D perovskite ferroelectric, (PA)2CsPb2Br7 (where PA is n-pentylammonium), which has a high Curie temperature of 349 K, evident spontaneous polarization (3.2 μC cm−2) and a low coercive electric field of 5.3 kV cm−1. The combination of symmetry-breaking in ferroelectrics and effective spin-orbit field facilitates intrinsic PST in the bulk and monolayer structure models. Strikingly, the directions of spin texture are reversible by switching the spontaneous electric polarization. This electric switching behavior relates to the tilting of PbBr6 octahedra and the reorientation of organic PA+ cations. Our studies on ferroelectric PST of 2D hybrid perovskites afford a platform for electrical spin texture manipulation.  相似文献   

7.
Above‐room‐temperature polar magnets are of interest due to their practical applications in spintronics. Here we present a strategy to design high‐temperature polar magnetic oxides in the corundum‐derived A2BB′O6 family, exemplified by the non‐centrosymmetric (R3) Ni3TeO6‐type Mn2+2Fe3+Mo5+O6, which shows strong ferrimagnetic ordering with TC=337 K and demonstrates structural polarization without any ions with (n?1)d10ns0, d0, or stereoactive lone‐pair electrons. Density functional theory calculations confirm the experimental results and suggest that the energy of the magnetically ordered structure, based on the Ni3TeO6 prototype, is significantly lower than that of any related structure, and accounts for the spontaneous polarization (68 μC cm?2) and non‐centrosymmetry confirmed directly by second harmonic generation. These results motivate new directions in the search for practical magnetoelectric/multiferroic materials.  相似文献   

8.
Three polymorphic forms of 6,6′‐dimethyl‐2,2′‐bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature‐dependent permittivity, differential scanning calorimetry, and X‐ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α‐form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base‐type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti‐polar structure (space group, P21/c) at 378 K. The non‐ferroelectric β‐ and γ‐form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen‐bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase‐transition temperature (TC) and hydrogen‐bond length (<d>) was observed, and was attributed to the potential barrier height for proton off‐centering or order/disorder phenomena. The optimized spontaneous polarization (Ps) agreed well with the results of the first‐principles calculations, and could be amplified by separating the two equilibrium positions of protons with increasing <d>. These data consistently demonstrated that stretching <d> is a promising way to enhance the polarization performance and thermal stability of hydrogen‐bonded organic ferroelectrics.  相似文献   

9.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

10.
Nicotinamide adenine dinucleotide (oxidized form, free acid, NAD+) was utilized as an auxiliary for polar alignment of gallic acid (=3,4,5‐trihydroxybenzoic acid, GA) in the crystalline molecular complex NAD+?(GA)2?(H2O)5. In this adduct, NAD+ takes up a novel U‐shaped conformation accepting a GA molecule to give rise to a pincer‐type π‐complex. With the assistance of further GA molecules, these pincer assemblies build up infinite donor? acceptor π‐stacks in the crystal. An extended network of H‐bonds among the multitude of pertinent active functional groups and the water molecules supports the crystal structure. These findings may imply noteworthy material properties, in particular nonlinear optical effects, and might also serve to trigger inspiring biochemical connections to be made. The crystal structure of anhydrous GA is also reported, which is centrosymmetric and non‐polar.  相似文献   

11.
In the title salt, also known as pentane‐1,5‐diammonium dichloride, C5H16N22+·2Cl, the cation exists in an ideal fully extended conformation and lies on a mirror plane in the space group Pbam. In the crystal structure, layers of cations are hydrogen bonded with Cl anions, which occupy the space between the layers. This kind of packing leads to a short unit‐cell parameter of 4.463 (1) Å. This structure is another case of centro–non‐centrosymmetric ambiguity; the best results were obtained in a centrosymmetric space group, with the disordered NH3 groups accounting for the non‐centrosymmetric `component'.  相似文献   

12.
Polarized light detection is attracting increasing attention for its wide applications ranging from optical switches to high‐resolution photodetectors. Two‐dimensional (2D) hybrid perovskite‐type ferroelectrics combining inherent light polarization dependence of bulk photovoltaic effect (BPVE) with excellent semiconducting performance present significant possibilities. Now, the BPVE‐driven highly sensitive polarized light detection in a 2D trilayered hybrid perovskite ferroelectric, (allyammonium)2(ethylammonium)2Pb3Br10 ( 1 ), is presented. It shows a superior BPVE with near‐band gap photovoltage of ca. 2.5 V and high on/off switching ratio of current (ca. 104). Driven by the superior BPVE, 1 exhibits highly sensitive polarized light detection with a polarization ratio as high as ca. 15, which is far more beyond than those of structural anisotropy‐based monocomponent devices. This is the first realization of BPVE‐driven polarized light detection in hybrid perovskite ferroelectrics.  相似文献   

13.
The title compound, [Cu(C6H2Br3O)2(NH3)2], a monomeric centrosymmetric CuII complex, crystallizes in the monoclinic system. The CuO2N2 coordination sphere is trans planar, [Cu—O 1.943 (5) Å and Cu—N 1.977 (6) Å], with the fifth and sixth coordination sites occupied by Br atoms from the phenoxide ions [Cu—Br 3.129 (1) Å], resulting in an elongated distorted octahedral structure for the CuO2N2Br2 coordination. Each of the NH3 groups forms two hydrogen bonds with the Br and O atoms of the CuO2N2Br2 moiety of a neighbouring mol­ecule. This arrangement constitutes a one‐dimensional chain along the x axis of the unit cell.  相似文献   

14.
Fast switching of spontaneous polarization (Ps) is one of the most essential requirements for ferroelectrics used in the field of data storage. However, in contrast to inorganic counterparts, the low operating frequency (<500 Hz) for molecular ferroelectrics severely hinders their large‐scale applications. Herein, for the first time, we achieved the room‐temperature fastest switching of the Ps in a new molecular ferroelectric, N‐methylmorpholinium trinitrophenolate ( 1 ), which displays notable ferroelectricity (Ps=3.2 μc cm?2). Strikingly, electric polarizations of 1 have been switched under a record‐high frequency of 263 kHz, and this performance remains stable without any obvious fatigue after ca. 2×105 switching cycles. To our knowledge, 1 is the first organic ferroelectric to switch polarization at such a high operating frequency, exceeding the majority of organic ferroelectrics, which opens up new possibilities for its potential in the field of non‐volatile memory.  相似文献   

15.
Hybrid organo–metal halide perovskite materials, such as CH3NH3PbI3, have been shown to be some of the most competitive candidates for absorber materials in photovoltaic (PV) applications. However, their potential has not been completely developed, because a photovoltaic effect with an anomalously large voltage can be achieved only in a ferroelectric phase, while these materials are probably ferroelectric only at temperatures below 180 K. A new hexagonal stacking perovskite‐type complex (3‐pyrrolinium)(CdCl3) exhibits above‐room‐temperature ferroelectricity with a Curie temperature Tc=316 K and a spontaneous polarization Ps=5.1 μC cm?2. The material also exhibits antiparallel 180° domains which are related to the anomalous photovoltaic effect. The open‐circuit photovoltage for a 1 mm‐thick bulky crystal reaches 32 V. This finding could provide a new approach to develop solar cells based on organo–metal halide perovskites in photovoltaic research.  相似文献   

16.
Self‐powered photodetection driven by ferroelectric polarization has shown great potential in next‐generation optoelectronic devices. Hybrid perovskite ferroelectrics that combine polarization and semiconducting properties have a promising position within this portfolio. Herein, we demonstrate the realization of self‐powered photodetection in a new developed biaxial ferroelectric, (EA)2(MA)2Pb3Br10 ( 1 , EA is ethylammonium and MA is methylammonium), which displays high Curie temperature (375 K), superior spontaneous polarization (3.7 μC cm?2), and unique semiconducting nature. Strikingly, without an external energy supply, 1 exhibits an direction‐selectable photocurrent with fascinating attributes including high photocurrent density (≈4.1 μA cm?2), high on/off switching ratio (over 106), and ultrafast response time (96/123 μs); such merits are superior to those of the most active ferroelectric oxide BiFeO3. Further studies reveal that strong inversion symmetry breaking in 1 provides a desirable driving force for carrier separation, accounting for such electrically tunable self‐powered photoactive behaviors. This work sheds light on exploring new multifunctional hybrid perovskites and advancing the design of intelligent photoelectric devices.  相似文献   

17.
Methylammonium (CH3NH3+) and formamidinium ((NH2)2CH+) based lead iodide perovskites are currently the two commonly used organic–inorganic lead iodide perovskites. There are still no alternative organic cations that can produce perovskites with band gaps spanning the visible spectrum (that is, <1.7 eV) for solar cell applications. Now, a new perovskite using large propane‐1,3‐diammonium cation (1,3‐Pr(NH3)22+) with a chemical structure of (1,3‐Pr(NH3)2)0.5PbI3 is demonstrated. X‐ray diffraction (XRD) shows that the new perovskite exhibits a three‐dimensional tetragonal phase. The band gap of the new perovskite is about 1.6 eV, which is desirable for photovoltaic applications. A (1,3‐Pr(NH3)2)0.5PbI3 perovskite solar cell (PSC) yields a power conversion efficiency (PCE) of 5.1 %. More importantly, this perovskite is composed of a large hydrophobic cation that provides better moisture resistance compared to CH3NH3PbI3 perovskite.  相似文献   

18.
Excellent conversion efficiencies of over 20 % and facile cell production have placed hybrid perovskites at the forefront of novel solar cell materials, with CH3NH3PbI3 being an archetypal compound. The question why CH3NH3PbI3 has such extraordinary characteristics, particularly a very efficient power conversion from absorbed light to electrical power, is hotly debated, with ferroelectricity being a promising candidate. This does, however, require the crystal structure to be non‐centrosymmetric and we herein present crystallographic evidence as to how the symmetry breaking occurs on a crystallographic and, therefore, long‐range level. Although the molecular cation CH3NH3+ is intrinsically polar, it is heavily disordered and this cannot be the sole reason for the ferroelectricity. We show that it, nonetheless, plays an important role, as it distorts the neighboring iodide positions from their centrosymmetric positions.  相似文献   

19.
The A‐site mixed‐ammonium solid solutions of metal–organic perovskites [(NH2NH3)x(CH3NH3)1?x][Mn(HCOO)3] (x=1.00–0.67) exhibit para‐ to ferroelectric diffuse phase transitions with lowered transition temperatures from x=1.00 to 0.67. These properties are due to the decreased framework distortion and polarization in their low temperature ferroelectric phases caused by the increased CH3NH3+ concentration.  相似文献   

20.
A family of perovskite light absorbers (NH4)3Sb2IxBr9−x (0≤x≤9) was prepared. These materials show good solubility in ethanol, a low-cost, hypotoxic, and environmentally friendly solvent. The light absorption of (NH4)3Sb2IxBr9−x films can be tuned by adjusting I and Br content. The absorption onset for (NH4)3Sb2IxBr9−x films changes from 558 nm to 453 nm as x changes from 9 to 0. (NH4)3Sb2I9 single crystals were prepared, exhibiting a hole mobility of 4.8 cm2 V−1 s−1 and an electron mobility of 12.3 cm2 V−1 s−1. (NH4)3Sb2I9 solar cells gave an open-circuit voltage of 1.03 V and a power conversion efficiency of 0.51 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号