首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process.Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-off between computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient.A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementation is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases.For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations. The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system.The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

2.
A computational fluid dynamics (CFD) modeling of the gas–solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian–Eularian method with the kinetic theory of granular flow is used to solve the gas–solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle–wall restitution coefficient. The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operating conditions of the CFB riser.  相似文献   

3.
A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle-wall restitution coefficient.The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operatin~ conditions of the CFB riser.  相似文献   

4.
Scale up of gas-solid circulating fluidized bed (CFB) risers poses many challenges to researchers.In this paper,CFD investigation of hydrodynamic scaling laws for gas-solid riser flow was attempted on the basis of two-fluid model simulations,in particular,the recently developed empirical scaling law of Qi,Zhu,and Huang (2008).A 3D computational model with periodic boundaries was used to perform numerical experiments and to study the effect of various system and operating parameters in hydrodynamic scaling o...  相似文献   

5.
A pressure balance model for a circulating fluidized bed unit that incorporates a downer has been proposed. The model predictions were validated with the experimental data obtained from a special cold-model circulating fluidized bed. Comparison of the operation stability between a CFB downer and a CFB riser has been carried out. Only one critical gas velocity exists in the CFB-riser for a given riser solids flux, while there can be many critical gas velocities for the operation of a CFB downer. Therefore, it is possible to achieve high solids concentration in a CFB downer if appropriate operating conditions are used.  相似文献   

6.
A pressure balance model for a circulating fluidized bed unit that incorporates a downer has been proposed. The model predictions were validated with the experimental data obtained from a special cold-model circulating fluidized bed. Comparison of the operation stability between a CFB downer and a CFB riser has been carried out. Only one critical gas velocity exists in the CFB-riser for a given riser solids flux, while there can be many critical gas velocities for the operation of a CFB downer. Therefore, it is possible to achieve high solids concentration in a CFB downer if appropriate operating conditions are used.  相似文献   

7.
We determine using a compound model the influence of the mass of granular matter on the behavior of a supercritical circulating fluidized bed (CFB) reactor. Population balance enables a stationary-regime modeling of the mass flow of granular matter inside a CFB unit in a large-scale. The simulation includes some important dynamic processes of gas-particle flows in fluidized bed such as attrition, fragmentation, elutriation, and fuel combustion. Numerical calculations with full boiler loading were performed of operational parameters such as furnace temperature, furnace pressure, feeding materials mass flows, and excess air ratio. Furthermore, three bed inventory masses were adopted as experimental variables in the simulation model of mass balance. This approach enables a sensitivity study of mass flows of granular matter inside a CFB facility. Some computational results from this population balance model obtained for a supercritical CFB reactor are presented that show consistency with the operational data for large-scale CFB units.  相似文献   

8.
A computational particle fluid dynamics (CPFD) numerical method to model gas–solid flows in a circulating fluidized bed (CFB) riser was used to assess the effects of particle size distribution (PSD) on solids distribution and flow. We investigated a binary PSD and a polydisperse PSD case. Our simulations were compared with measured solids concentrations and velocity profiles from experiments, as well as with a published Eulerian-Eulerian simulation. Overall flow patterns were similar for both simulation cases, as confirmed by experimental measurements. However, our fine-mesh CPFD simulations failed to predict a dense bottom region in the riser, as seen in other numerical studies. Above this bottom region, distributions of particle volume fraction and particle vertical velocity were consistent with our experiments, and the simulated average particle diameter decreased as a power function with riser height. Interactions between particles and walls also were successfully modeled, with accurate predictions for the lateral profiles of particle vertical velocity. It was easy to implement PSD into the CPFD numerical model, and it required fewer computational resources compared with other models, especially when particles with a polydisperse PSD were present in the heterogeneous flow.  相似文献   

9.
Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows.  相似文献   

10.
In the current work, a model of the fluid mechanics in the riser of a circulating fluidized bed (CFB) has been implemented using computational fluid dynamics (CFD). The model developed shall be used in future as the basis of 3D-reactor model for the simulation of large scale CFB combustors. The two-fluid model (TFM) approach is used to represent the fluid mechanics involved in the flow. The computational implementation is accomplished by the commercial software FLUENT. Different closure formulations are tested on a simplified geometry. Two different turbulence formulations, namely the swirl modified RNG k-e model and the Realizable k-e model, are tested in combination with two different approaches to solid phase turbulence, namely the dispersion and per phase approach. One focus of the current work is put on the study of different drag correlations. Besides the drag correlations by Syamlal et al. [Syamlal, M., Rogers, W., & O'Brien, T. J. (1993). MFIX documentation theory guide. Technical Report DOE/METC-9411004, U.S. Department of Energy (DOE). Morgantown Energy Technology Center: Morgantown, WV] and Gidaspow [Gidaspow, D. (1994). Multiphaseflow andfluidization. New York: Academic Press] the EMMS model has been used to determine the momentum exchange between the two phases. The resulting formulation is then used to simulate a 1-m × 0.3-m cold CFB setup and is validated by experimental results [Schlichtharle, P. (2000). Fluid dynamics and mixing of solids and gas in the bottom zone of circulating fluidized beds. Unoublished doctoral dissertation, Technische Universitaet Hamburg-Harburg, Shaker Verlag: Aachen].  相似文献   

11.
A computational particle fluid dynamics(CPFD) numerical method to model gas-solid flows in a circulating fluidized bed(CFB) riser was used to assess the effects of particle size distribution(PSD) on solids distribution and flow.We investigated a binary PSD and a polydisperse PSD case.Our simulations were compared with measured solids concentrations and velocity profiles from experiments,as well as with a published Eulerian-Eulerian simulation.Overall flow patterns were similar for both simulation cases,as confirmed by experimental measurements.However,our fine-mesh CPFD simulations failed to predict a dense bottom region in the riser,as seen in other numerical studies.Above this bottom region,distributions of particle volume fraction and particle vertical velocity were consistent with our experiments,and the simulated average particle diameter decreased as a power function with riser height.Interactions between particles and walls also were successfully modeled,with accurate predictions for the lateral profiles of particle vertical velocity.It was easy to implement PSD into the CPFD numerical model,and it required fewer computational resources compared with other models,especially when particles with a polydisperse PSD were present in the heterogeneous flow.  相似文献   

12.
The diffusion and chemical reactions inside the catalyst particles and the heterogeneous flow structure in the computational cells are key factors to affect the accuracy of the coarse-grid simulation in circulating fluidized bed (CFB) methanation reactors. In this work, a particle-scale model is developed to calculate the effective reaction rate considering the transient diffusion and chemical reactions in the particle scale, i.e., the scale of the single catalyst particle. A modified sub-grid drag model is proposed to consider the effects of the meso-scale and chemical reactions on the heterogeneous gas-solid interaction, where the meso-scale is between the single particle and the whole reactor and featured with the particle cluster. Subsequently, a coupled model is developed by integrating the particle-scale and modified sub-grid drag models into CFD. Moreover, the coupled model is validated to achieve accurate predictions on the CO methanation process in a CFB riser. Notably, the coupled model can be performed with a coarse grid (∼58 times particle diameter) and a large time step (0.005 s) to accelerate the simulation. By simply changing the reaction kinetics, different gas-solid catalytic reaction systems can be simulated by using the coupled model.  相似文献   

13.
复杂气固两相系统的微观结构   总被引:2,自引:0,他引:2  
周浩生  陆继东 《实验力学》1999,14(2):190-196
流化床中的气固两相流动是一个高度复杂的非线性混沌系统。本文利用激光粒子动态分析仪(PDA)得到的循环流化床中颗粒脉动速度信号,采用FFT分析了脉动信号的宽频谱特征,在此基础上应用小波法分析了脉动信号的动态特征,得到了颗粒脉动速度的微观结构,指出颗粒脉动速度的非线性特性是流化床具有混沌特性的根源,且在不同的尺度上颗粒脉动速度表现出各向异性的特征。  相似文献   

14.
Riser operating modes are vital to designing a circulating fluidized bed (CFB) reactor for a required process of either a gas-solid or a gas-catalytic nature. Different operating modes provide different solids’ residence times and mixing behaviors, which define the reactions’ efficiency and yield. The literature demonstrates distinct operating modes resulting from observed differences in slip factors and the range of particle velocities and their associated residence time distribution. The present research uses positron emission particle tracking (PEPT) in a riser of B-type bed material to determine the different operating modes by measuring (i) particle velocities and residence time distribution, (ii) population densities of these particles in the cross-sectional area of the riser, and (iii) solids flow pattern at the bottom of the riser. Data treatment defines four distinct solids hold-up regimes in the riser and proposes a "phase diagram" depicting the existence of the different operating modes (dilute, dense, core-annulus and combined) as a function of the superficial gas velocity and solids circulation flux in the riser. The delineated regimes have good agreement with available literature data and known industrial operations. Comparison with literature data for risers using A-type powders is also fair. The diagram enables CFB designers to better delineate operating characteristics.  相似文献   

15.
Jesse Zhu   《Particuology》2010,8(6):640-644
While circulating fluidized bed (CFB) reactor has many advantages over the more conventional turbulent fluidized bed (TFB) reactor, it does at least have one significant shortcoming-the rather dilute solids volume concentration in CFB reactor gives rise to less ideal reaction intensity. On the other hand, while having higher reaction intensity, TFB reactor has one fatal drawback of particle back-mixing, making it not suitable for certain reactions such as catalytic reaction where the catalyst requires frequent regeneration. This paper describes some key issues in the development of a circulating turbulent fluidized bed (CTFB) reactor that combines the advantages of both TFB and CFB, that is, to have the high reaction intensity as in TFB but and also to have a suppressed solids back-mixing as in CFB due to a continuous net upflow of solids flux through the bed. Experimental results show enough evidence to suggest that a new fluidization regime is formed, the characteristics of which appears to be distinct from those observed in a regular TFB and from those in either the bottom or the upper sections of regular CFB and/or high-density CFB (HDCFB). Fundamentally, the difference is that particle-particle interaction (collision) dominates the motion of particles in CTFB and TFB, while gas-particle interaction (drag force) is the key element that determines the two phase flow in CFB including HDCFB.  相似文献   

16.
A cluster-based drag model is proposed for the gas-solid circulating fluidized bed (CFB) riser by including the cluster information collected from image process...  相似文献   

17.
Rotational asymmetric distribution of reactant (ozone) concentration and its evolution along with the gas-solid reactive flow were studied in a 76 mm i.d., 10.2 m high circulating fluidized bed (CFB) riser reactor. The superficial gas velocity ranged from 3 to 5 m/s and the solids circulation rates were 50 and 100 kg/(m2 s). Experimental results show that the asymmetry of reactant distribution can extend to a height close to the length of flow developing zone of the CFB riser reactor and then disappears. Based on the hydrodynamics of the gas and solid phases in the solids entrance region, this asymmetry can be attributed to the effect of the solids entrance structure.  相似文献   

18.
Two modes of gas-solid riser operation, i.e., fluid catalytic cracking (FCC) and circulating fluidized bed combustor (CFBC), have been recognized in literature; particularly in the understanding of choking phenomena. This work compares these two modes of operation through computational fluid dynamics (CFD) simulation. In CFD simulations, the different operations are represented by fixing appropriate boundary conditions: solids flux or solids inventory. It is found that the FCC and CFBC modes generally have the same dependence of solids flux on the mean solids volume fraction or solids inventory. However, during the choking transition, the FCC mode of operation needs more time to reach a steady state; thus the FCC system may have insufficient time to respond to valve adjustments or flow state change, leading to the choking. The difference between FCC and CFBC systems is more pronounced for the systems with longer risers. A more detailed investigation of these two modes of riser operation may require a three-dimensional full loop simulation with dynamic valve adjustment.  相似文献   

19.
In large-scale circulating fluidized bed (CFB) boilers, it is common to use multiple cyclones in parallel for the capture of solids, assuming that gas–solid flow to be the same in the cyclones. This article presents a study investigating gas–solid flow through six parallel cyclones in a CFB cold test rig. The six cyclones were located asymmetrically on the left and right walls of the riser. Solid volume fraction and particle velocity profiles at the riser outlets and in the horizontal ducts were measured using a fiber optical probe. Cyclone pressure drop and solid circulating rate were measured for each individual cyclone. Measurements showed good agreement as to the non-uniform distribution of the gas–solid flow, which occurred mainly across the three cyclones on one side: the middle cyclones on both sides had higher particle velocities. Conversely, the solid volume fractions, solid fluxes and solid circulating rates of the middle cyclones were lower than those of the other four cyclones. The apparent reason for the flow non-uniformity among the cyclones is the significant flow non-uniformity at the riser outlets. Under typical operating conditions, the solid volume fractions at the riser outlets had a deviation of up to 26% whereas the solid circulating rates at the stand pipes, 7%. These results are consistent with most other studies in the literature.  相似文献   

20.
Within the framework of the two-fluid approach, gas was treated with a large-eddy simulation and a sub-grid-scale (SGS) turbulent kinetic energy model while particles were treated with a second-order-moment method to describe the anisotropy of the fluctuating velocity. A modified Simonin model was derived for the gas–solid interphase fluctuating energy transfer. The anisotropic gas–solid flow in a circulating fluidized bed was investigated. Predictions were in good agreement with experimental data. The distributions of the second-order moment of particles and SGS-turbulent kinetic energy of gas were simulated at different solid mass fluxes. The effects of the solid mass flux on the particle second-order moment, particle anisotropic behavior, gas SGS-turbulent kinetic energy and gas SGS energy dissipation were analyzed for the circulating fluidized bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号