首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gruenberg–Kegel graph GK(G) = (V G , E G ) of a finite group G is a simple graph with vertex set V G  = π(G), the set of all primes dividing the order of G, and such that two distinct vertices p and q are joined by an edge, {p, q} ∈ E G , if G contains an element of order pq. The degree deg G (p) of a vertex p ∈ V G is the number of edges incident to p. In the case when π(G) = {p 1, p 2,…, p h } with p 1 < p 2 < … <p h , we consider the h-tuple D(G) = (deg G (p 1), deg G (p 2),…, deg G (p h )), which is called the degree pattern of G. The group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups H satisfying condition (|H|, D(H)) = (|G|, D(G)). Especially, a 1-fold OD-characterizable group is simply called OD-characterizable. In this paper, we prove that the simple groups L 10(2) and L 11(2) are OD-characterizable. It is also shown that automorphism groups Aut(L p (2)) and Aut(L p+1(2)), where 2 p  ? 1 is a Mersenne prime, are OD-characterizable. Finally, a list of finite (simple) groups which are presently known to be k-fold OD-characterizable, for certain values of k, is presented.  相似文献   

2.
Denote by ω(G) the number of orbits of the action of Aut(G) on the finite group G. We prove that if G is a finite nonsolvable group in which ω(G) ≤5, then G is isomorphic to one of the groups A5, A6, PSL(2, 7), or PSL(2, 8). We also consider the case when ω(G) = 6 and show that, if G is a nonsolvable finite group with ω(G) = 6, then either GPSL(3, 4) or there exists a characteristic elementary abelian 2-subgroup N of G such that G/NA5.  相似文献   

3.
《代数通讯》2013,41(6):2325-2339
Abstract

Order components of a finite group are introduced in Chen [Chen, G. Y. (1996c) On Thompson's conjecture. J. Algebra 185:184–193]. It was proved that PSL(3, q), where q is an odd prime power, is uniquely determined by its order components [Iranmanesh, A., Alavi, S. H., Khosravi, B. (2002a). A characterization of PSL(3, q) where q is an odd prime power. J. Pure Appl. Algebra 170(2–3): 243–254]. Also in Iranmanesh et al. [Iranmanesh, A., Alavi, S. H., Khosravi, B. (2002b). A characterization of PSL(3, q) where q = 2 n . Acta Math. Sinica, English Ser. 18(3):463–472] and [Iranmanesh, A., Alavi, S. H. (2002). A characterization of simple groups PSL(5, q). Bull. Austral. Math. Soc. 65:211–222] it was proved that PSL(3, q) for q = 2 n and PSL(5, q) are uniquely determined by their order components. In this paper we prove that PSL(p, q) can be uniquely determined by its order components, where p is an odd prime number. A main consequence of our results is the validity of Thompson's conjecture for the groups under consideration.  相似文献   

4.
Yongcai Ren 《代数通讯》2013,41(6):2635-2644
Let G be a finite group. We put ρ(G) = {p|p is a prime dividing χ(1) for some χ ∈Irr(G)}. We define a graph Γ(G), whose vertices are the primes in ρ(G) and p, q ∈ ρ(G) are connected in Γ(G) denoted p ~ q, if pq||χ(1) for some χ ∈Irr(G). For p ∈ ρ(G), we define ord(p) = |{q ∈ ρ(G)|q ~ p}|. We call ord(p) the order of the vertex p of the graph Γ(G). In this article, we discuss orders and the influences of orders on the structure of finite groups.  相似文献   

5.
Timothy J. Ford 《代数通讯》2013,41(9):3277-3298
We study algebra classes and divisor classes on a normal affine surface of the form z 2 = f(x, y). The affine coordinate ring is T = k[x, y, z]/(z 2 ? f), and if R = k[x, y][f ?1] and S = R[z]/(z 2 ? f), then S is a quadratic Galois extension of R. If the Galois group is G, we show that the natural map H1(G, Cl(T)) → H1(G, Pic(S)) factors through the relative Brauer group B(S/R) and that all of the maps are onto. Sufficient conditions are given for H1(G, Cl(T)) to be isomorphic to B(S/R). The groups and maps are computed for several examples.  相似文献   

6.
A weak Cayley table isomorphism is a bijection φ: G → H of groups such that φ(xy) ~ φ(x)φ(y) for all x, y ∈ G. Here ~denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ: G → G forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I: G → G, x → x ?1. Let 𝒲0(G) = ?Aut(G), I? ≤ 𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that all finite irreducible Coxeter groups (except possibly E 8) have trivial weak Cayley table group, as well as most alternating groups. We also consider some sporadic simple groups.  相似文献   

7.
David I. Stewart 《代数通讯》2013,41(12):4702-4716
Let G be the simple, simply connected algebraic group SL 3 defined over an algebraically closed field K of characteristic p > 0. In this article, we find H 2(G, V) for any irreducible G-module V. When p > 7, we also find H 2(G(q), V) for any irreducible G(q)-module V for the finite Chevalley groups G(q) = SL(3, q) where q is a power of p.  相似文献   

8.
A weak Cayley table isomorphism is a bijection φ:GH of groups such that φ(xy)~φ(x)φ(y) for all x,yG. Here ~ denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ:GG forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I:GG,x?x?1. Let 𝒲0(G) = ?Aut(G),I?≤𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that PSL(2,pn) has trivial weak Cayley table group, where p≥5 is a prime and n≥1.  相似文献   

9.
We classify quotients of type PSL(2,q) and PGL(2,q) with torsion-free kernel for four of the nine hyperbolic tetrahedral groups. Using this result, we give a classification of the quotients with torsion-free kernel of type PSL(2q) ×Z2 of the associated Coxeter or reflection groups. These do not admit quotients of type PSL(2,q),PGL(2,q). We also study quotients of type PSL(2,q) and PGL(2,q) of the fundamental group of the hyperbolic 3-orbifold of minimal known volume.  相似文献   

10.
We prove that a finite solvable group G admitting a Frobenius group FH of automorphisms of coprime order with kernel F and complement H such that [G, F] = G and C C G (F)(h) = 1 for all nonidentity elements h ∈ H, is of nilpotent length equal to the nilpotent length of the subgroup of fixed points of H.  相似文献   

11.
Let G be a finite group and π(G) be the set of all prime divisors of its order. The prime graph GK(G) of G is a simple graph with vertex set π(G), and two distinct primes p, q ∈ π(G) are adjacent by an edge if and only if G has an element of order pq. For a vertex p ∈ π(G), the degree of p is denoted by deg(p) and as usual is the number of distinct vertices joined to p. If π(G) = {p 1, p 2,...,p k }, where p 1 < p 2 < ... < p k , then the degree pattern of G is defined by D(G) = (deg(p 1), deg(p 2),...,deg(p k )). The group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups H satisfying conditions |H| = |G| and D(H) = D(G). In addition, a 1-fold OD-characterizable group is simply called OD-characterizable. In the present article, we show that the alternating group A 22 is OD-characterizable. We also show that the automorphism groups of the alternating groups A 16 and A 22, i.e., the symmetric groups S 16 and S 22 are 3-fold OD-characterizable. It is worth mentioning that the prime graph associated to all these groups are connected.  相似文献   

12.
《代数通讯》2013,41(3):1253-1270
Abstract

Let G a simple group of type 2 B 2(q) or 2 G 2(q), where q is an odd power of 2 or 3, respectively. The main goal of this paper is to determine the multiplicity free permutation representations of G and A ≤ Aut(G) where A is a subgroup containing a copy of G. Let B be a Borel subgroup of G. If G = 2 B 2(q) we show that there is only one non-trivial multiplicity free permutation representation, namely the representation of G associated to the action on G/B. If G = 2 G 2(q) we show that there are exactly two such non-trivial representations, namely the representations of G associated to the action on G/B and the action on G/M, where M = UC with U the maximal unipotent subgroup of B and C the unique subgroup of index 2 in the maximal split torus of B. The multiplicity free permutation representations of A correspond to the actions on A/H where H is isomorphic to a subgroup containing B if G = 2 B 2(q), and containing M if G = 2 G 2(q). The problem of determining the multiplicity free representations of the finite simple groups is important, for example, in the classification of distance-transitive graphs.  相似文献   

13.
Given a graph G, for each υ ∈V(G) let L(υ) be a list assignment to G. The well‐known choice number c(G) is the least integer j such that if |L(υ)| ≥j for all υ ∈V(G), then G has a proper vertex colouring ? with ?(υ) ∈ L (υ) (?υ ∈V(G)). The Hall number h(G) is like the choice number, except that an extra non‐triviality condition, called Hall's condition, has to be satisfied by the list assignment. The edge‐analogue of the Hall number is called the Hall index, h′(G), and the total analogue is called the total Hall number, h″(G), of G. If the stock of colours from which L(υ) is selected is restricted to a set of size k, then the analogous numbers are called k‐restricted, or restricted, Hall parameters, and are denoted by hk(G), hk(G) and hk(G). Our main object in this article is to determine, or closely bound, h′(K), h″(Kn), h′(Km,n) and hk(Km,n). We also answer some hitherto unresolved questions about Hall parameters. We show in particular that there are examples of graphs G with h′(G)?h′(G ? e)>1. We show that there are examples of graphs G and induced subgraphs H with hk(G)<hk(H) [this phenomenon cannot occur with unrestricted Hall numbers]. We also give an example of a graph G and an integer k such that hk(G)<χ(G)<h(G). © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 208–237, 2002  相似文献   

14.
Xianglin Du 《代数通讯》2013,41(4):1345-1359
ABSTRACT

Let k(G) be the number of conjugacy classes of finite groups G and π e (G) be the set of the orders of elements in G. Then there exists a non-negative integer k such that k(G) = |π e (G)| + k. We call such groups to be co(k) groups. This article classifies all finite co(1) groups. They are isomorphic to one of the following groups: A 5, L 2(7), S 5, Z 3, Z 4, S 4, A 4, D 10, Hol(Z 5), or Z 3 ? Z 4.  相似文献   

15.
16.
Let G be a finite group. We define the prime graph Γ(G) as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. Recently M. Hagie [5] determined finite groups G satisfying Γ(G) = Γ(S), where S is a sporadic simple group. Let p > 3 be a prime number. In this paper we determine finite groups G such that Γ(G) = Γ(PSL(2, p)). As a consequence of our results we prove that if p > 11 is a prime number and p ≢ 1 (mod 12), then PSL(2, p) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph. The third author was supported in part by a grant from IPM (No. 84200024).  相似文献   

17.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

18.
A square matrix over the complex field with non-negative integral trace is called a quasi-permutation matrix. For a finite group G the minimal degree of a faithful permutation representation of G is denoted by p(G). The minimal degree of a faithful representation of G by quasi-permutation matrices over the rational and the complex numbers are denoted by q(G) and c(G) respectively. Finally r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper p(G), q(G), c(G) and r(G) are calculated for the groups PSU (3, q2) and SU (3, q2).AMS Subject Classification (2000): 20C15  相似文献   

19.
Zhen Wang 《代数通讯》2013,41(10):3730-3749
Let k be a field and A n (ω) be the Taft's n 2-dimensional Hopf algebras. When n is odd, the Drinfeld quantum double D(A n (ω)) of A n (ω) is a Ribbon Hopf algebra. In the previous articles, we constructed an n 4-dimensional Hopf algebra H n (p, q) which is isomorphic to D(A n (ω)) if p ≠ 0 and q = ω?1, and studied the finite dimensional representations of H n (1, q). We showed that the basic algebra of any nonsimple block of H n (1, q) is independent of n. In this article, we examine the infinite representations of H 2(1, ? 1), or equivalently of H n (1, q)?D(A n (ω)) for any n ≥ 2. We investigate the indecomposable and algebraically compact modules over H 2(1, ? 1), describe the structures of these modules and classify them under the elementary equivalence.  相似文献   

20.
The heterochromatic number h c (H) of a non-empty hypergraph H is the smallest integer k such that for every colouring of the vertices of H with exactly k colours, there is a hyperedge of H all of whose vertices have different colours. We denote by ν(H) the number of vertices of H and by τ(H) the size of the smallest set containing at least two vertices of each hyperedge of H. For a complete geometric graph G with n ≥ 3 vertices let H = H(G) be the hypergraph whose vertices are the edges of G and whose hyperedges are the edge sets of plane spanning trees of G. We prove that if G has at most one interior vertex, then h c (H) = ν(H) ? τ(H) + 2. We also show that h c (H) = ν(H) ? τ(H) + 2 whenever H is a hypergraph with vertex set and hyperedge set given by the ground set and the bases of a matroid, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号