首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Gruenberg–Kegel graph GK(G) = (V G , E G ) of a finite group G is a simple graph with vertex set V G  = π(G), the set of all primes dividing the order of G, and such that two distinct vertices p and q are joined by an edge, {p, q} ∈ E G , if G contains an element of order pq. The degree deg G (p) of a vertex p ∈ V G is the number of edges incident to p. In the case when π(G) = {p 1, p 2,…, p h } with p 1 < p 2 < … <p h , we consider the h-tuple D(G) = (deg G (p 1), deg G (p 2),…, deg G (p h )), which is called the degree pattern of G. The group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups H satisfying condition (|H|, D(H)) = (|G|, D(G)). Especially, a 1-fold OD-characterizable group is simply called OD-characterizable. In this paper, we prove that the simple groups L 10(2) and L 11(2) are OD-characterizable. It is also shown that automorphism groups Aut(L p (2)) and Aut(L p+1(2)), where 2 p  ? 1 is a Mersenne prime, are OD-characterizable. Finally, a list of finite (simple) groups which are presently known to be k-fold OD-characterizable, for certain values of k, is presented.  相似文献   

2.
The prime graph of a finite group was introduced by Gruenberg and Kegel. The degree pattern of a finite group G associated to its prime graph was introduced in [1] and denoted by D(G). The group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups H satisfying conditions (1) |G| = |H| and (2) D(G) = D(H). Moreover, a 1-fold OD-characterizable group is simply called an OD-characterizable group. Till now a lot of finite simple groups were shown to be OD-characterizable, and also some finite groups especially the automorphism groups of some finite simple groups were shown not being OD-characterizable but k-fold OD-characterizable for some k > 1. In the present paper, the authors continue this topic and show that the automorphism groups of orthogonal groups O 10+(2) and O 10(2) are OD-characterizable.  相似文献   

3.
OD-characterization of Almost Simple Groups Related to U3(5)   总被引:1,自引:0,他引:1  
Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.  相似文献   

4.
All groups considered in this paper will be finite. Our main result here is the following theorem. Let G be a solvable group in which the Sylow p-subgroups are either bicyclic or of order p 3 for any pπ(G). Then the derived length of G is at most 6. In particular, if G is an A4-free group, then the following statements are true: (1) G is a dispersive group; (2) if no prime qπ(G) divides p 2 + p + 1 for any prime pπ(G), then G is Ore dispersive; (3) the derived length of G is at most 4.  相似文献   

5.
The degree pattern of a finite group M has been introduced by A. R. Moghaddamfar et al. [Algebra Colloquium, 2005, 12(3): 431–442]. A group M is called k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups having the same order and degree pattern as M. In particular, a 1-fold OD-characterizable group is simply called OD-characterizable. In this article, we will show that the alternating groups A p+3 for p = 23, 31, 37, 43 and 47 are OD-characterizable. Moreover, we show that the automorphism groups of these groups are 3-fold OD-characterizable. It is worth mentioning that the prime graphs associated with all these groups are connected.  相似文献   

6.
On Group Chromatic Number of Graphs   总被引:2,自引:0,他引:2  
Let G be a graph and A an Abelian group. Denote by F(G, A) the set of all functions from E(G) to A. Denote by D an orientation of E(G). For fF(G,A), an (A,f)-coloring of G under the orientation D is a function c : V(G)↦A such that for every directed edge uv from u to v, c(u)−c(v) ≠ f(uv). G is A-colorable under the orientation D if for any function fF(G, A), G has an (A, f)-coloring. It is known that A-colorability is independent of the choice of the orientation. The group chromatic number of a graph G is defined to be the least positive integer m for which G is A-colorable for any Abelian group A of order ≥m, and is denoted by χg(G). In this note we will prove the following results. (1) Let H1 and H2 be two subgraphs of G such that V(H1)∩V(H2)=∅ and V(H1)∪V(H2)=V(G). Then χg(G)≤min{max{χg(H1), maxvV(H2)deg(v,G)+1},max{χg(H2), maxuV(H1) deg (u, G) + 1}}. We also show that this bound is best possible. (2) If G is a simple graph without a K3,3-minor, then χg(G)≤5.  相似文献   

7.
Yongcai Ren 《代数通讯》2013,41(6):2635-2644
Let G be a finite group. We put ρ(G) = {p|p is a prime dividing χ(1) for some χ ∈Irr(G)}. We define a graph Γ(G), whose vertices are the primes in ρ(G) and p, q ∈ ρ(G) are connected in Γ(G) denoted p ~ q, if pq||χ(1) for some χ ∈Irr(G). For p ∈ ρ(G), we define ord(p) = |{q ∈ ρ(G)|q ~ p}|. We call ord(p) the order of the vertex p of the graph Γ(G). In this article, we discuss orders and the influences of orders on the structure of finite groups.  相似文献   

8.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

9.
Group Chromatic Number of Graphs without K5-Minors   总被引:2,自引:0,他引:2  
 Let G be a graph with a fixed orientation and let A be a group. Let F(G,A) denote the set of all functions f: E(G) ↦A. The graph G is A -colorable if for any function fF(G,A), there is a function c: V(G) ↦A such that for every directed e=u vE(G), c(u)−c(v)≠f(e). The group chromatic numberχ1(G) of a graph G is the minimum m such that G is A-colorable for any group A of order at least m under a given orientation D. In [J. Combin. Theory Ser. B, 56 (1992), 165–182], Jaeger et al. proved that if G is a simple planar graph, then χ1(G)≤6. We prove in this paper that if G is a simple graph without a K 5-minor, then χ1(G)≤5. Received: August 18, 1999 Final version received: December 12, 2000  相似文献   

10.
In this paper, we prove the following theorem: Let p be a prime number, P a Sylow psubgroup of a group G and π = π(G) / {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble group and P' ≤ Op(G); 2) lp(G) ≤ 2 and lπ(G) ≤ 2; 3) if a π-Hall subgroup of G is q-supersoluble for some q ∈ π, then G is q-supersoluble.  相似文献   

11.
Xianglin Du 《代数通讯》2013,41(4):1345-1359
ABSTRACT

Let k(G) be the number of conjugacy classes of finite groups G and π e (G) be the set of the orders of elements in G. Then there exists a non-negative integer k such that k(G) = |π e (G)| + k. We call such groups to be co(k) groups. This article classifies all finite co(1) groups. They are isomorphic to one of the following groups: A 5, L 2(7), S 5, Z 3, Z 4, S 4, A 4, D 10, Hol(Z 5), or Z 3 ? Z 4.  相似文献   

12.
In [5], Navarro defines the set , where Q is a p-subgroup of a p-solvable group G, and shows that if δ is the trivial character of Q, then Irr(G|Q, δ) provides a set of canonical lifts of IBrp(G), the irreducible Brauer characters with vertex Q. Previously, in [2], Isaacs defined a canonical set of lifts Bπ(G) of Iπ(G). Both of these results extend the Fong-Swan Theorem to π-separable groups, and both construct canonical sets of lifts of the generalized Brauer characters. It is known that in the case that 2∈π, or if |G| is odd, we have Bπ(G) = Irr(G|Q, 1Q). In this note we give a counterexample to show that this is not the case when . It is known that if and χ∈Bπ(G), then the constituents of χN are in Bπ (N). However, we use the same counterexample to show that if , and χ∈Irr(G|Q, 1Q) is such that θ ∈Irr(N) and [θ, χ N] ≠ 0, then it is not necessarily the case that θ ∈Irr(N) inherits this property. Received: 17 October 2005  相似文献   

13.
It is proved that, if G is a finite group that has the same set of element orders as the simple group D p (q), where p is prime, p ≥ 5 and q ∈ {2, 3, 5}, then the commutator group of G/F(G) is isomorphic to D p (q), the subgroup F(G) is equal to 1 for q = 5 and to O q (G) for q ∈ {2, 3}, F(G) ≤ G′, and |G/G′| ≤ 2.  相似文献   

14.
A graph G is called k-degenerate if every subgraph of G has a vertex of degree at most k. A k-degenerate graph G is maximal k-degenerate if for every edge e ? E(G), G + e is not k-degenerate. Necessary and sufficient conditions for the sequence II = (d1, d2, ?, dp) to be a degree sequence of a maximal k-degenerate graph G are presented. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Donald L. White 《代数通讯》2013,41(8):2907-2921
Let G be a finite group and let cd (G) be the set of irreducible character degrees of G. The degree graph Δ(G) is the graph whose set of vertices is the set of primes that divide degrees in cd (G), with an edge between p and q if pq divides a for some degree a ? cd (G). We determine the graph Δ(G) for the finite simple groups of types A ?(q) and 2 A ? (q 2), that is, for the simple linear and unitary groups.  相似文献   

16.
Let G be a finite abelian group with |G| > 1. Let a 1, …, a k be k distinct elements of G and let b 1, …, b k be (not necessarily distinct) elements of G, where k is a positive integer smaller than the least prime divisor of |G|. We show that there is a permutation π on {1, …,k} such that a 1 b π(1), …, a k b π(k) are distinct, provided that any other prime divisor of |G| (if there is any) is greater than k!. This in particular confirms the Dasgupta-Károlyi-Serra-Szegedy conjecture for abelian p-groups. We also pose a new conjecture involving determinants and characters, and show that its validity implies Snevily’s conjecture for abelian groups of odd order. Our methods involve exterior algebras and characters.  相似文献   

17.
Graph G is a (k, p)‐graph if G does not contain a complete graph on k vertices Kk, nor an independent set of order p. Given a (k, p)‐graph G and a (k, q)‐graph H, such that G and H contain an induced subgraph isomorphic to some Kk?1‐free graph M, we construct a (k, p + q ? 1)‐graph on n(G) + n(H) + n(M) vertices. This implies that R (k, p + q ? 1) ≥ R (k, p) + R (k, q) + n(M) ? 1, where R (s, t) is the classical two‐color Ramsey number. By applying this construction, and some its generalizations, we improve on 22 lower bounds for R (s, t), for various specific values of s and t. In particular, we obtain the following new lower bounds: R (4, 15) ≥ 153, R (6, 7) ≥ 111, R (6, 11) ≥ 253, R (7, 12) ≥ 416, and R (8, 13) ≥ 635. Most of the results did not require any use of computer algorithms. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 231–239, 2004  相似文献   

18.
A finite group G is of central type (in the non-classical sense) if it admits a non-degenerate cohomology class [c] ∈ H 2(G, ℂ*) (G acts trivially on ℂ*). Groups of central type play a fundamental role in the classification of semisimple triangular complex Hopf algebras and can be determined by their representation-theoretical properties. Suppose that a finite group Q acts on an abelian group A so that there exists a bijective 1-cocycle π ∈ Z 1(Q,Ǎ), where Ǎ = Hom(A, ℂ*) is endowed with the diagonal Q-action. Under this assumption, Etingof and Gelaki gave an explicit formula for a non-degenerate 2-cocycle in Z 2(G, ℂ*), where G:= A × Q. Hence, the semidirect product G is of central type. In this paper, we present a more general correspondence between bijective and non-degenerate cohomology classes. In particular, given a bijective class [π] ∈ H 1(Q,Ǎ) as above, we construct non-degenerate classes [cπ] ∈ H 2(G,ℂ*) for certain extensions 1 → A → G → Q → 1 which are not necessarily split. We thus strictly extend the above family of central type groups.  相似文献   

19.
For a finite group G, let πe(G) be the set of order of elements in G and denote S n the symmetric group on n letters. We will show that if πe(G ) = πe(H), where H is S p or S p+1 and p is a prime with 50 < p < 100, then GH. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
In representation theory of finite groups, one of the most important and interesting problems is that, for a p-block A of a finite group G where p is a prime, the numbers k(A) and (A) of irreducible ordinary and Brauer characters, respectively, of G in A are p-locally determined. We calculate k(A) and (A) for the cases where A is a full defect p-block of G, namely, a defect group P of A is a Sylow p-subgroup of G and P is a nonabelian metacyclic p-group M n+1(p) of order p n+1 and exponent p n for n \geqslant 2{n \geqslant 2}, and where A is not necessarily a full defect p-block but its defect group PM n+1(p) is normal in G. The proof is independent of the classification of finite simple groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号