首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption, diffusion, and pervaporation (PV) properties of benzene/cyclohexane (Bz/Cx) mixtures on cation-exchange membranes containing copper ions (Cu(II)) were investigated. The equilibrium sorption isotherms of pure vapors in the membranes and the partial solubility of binary solutions in the membranes were described using the UNIQUAC model. The τiM and τMi values were 0.978 and 0.591 for Bz, and 0.922 and 0.475 for Cx. The transient regimes of vapor sorption were employed to calculate the concentration-dependent diffusion coefficients. Long’s model sufficiently explained the diffusivity of Bz and Cx in the membranes. The pre-exponential factors were 3×10−13 m2/s and the plasticization factors were 3.0 and 3.6 for Bz and Cx, respectively. Excellent agreement was found with the experimental results applying the solubility and diffusivity data to simulate the pervaporation performance (flux and selectivity) using the modified Maxwell–Stefan equation. The membrane containing Cu(II) demonstrates better facilitating capability for Bz transport than that with Na(I), mainly due to its preferential sorption property toward Bz. Replacing Na(I) with Cu(II) into a Neosepta membrane resulted in better separation efficiency and higher Bz flux throughout the entire Bz concentration range.  相似文献   

2.
甲醇/ 甲基叔丁基醚的分离是目前具有实用意义的重要研究课题之一,采用气流吹扫式操作,研究了聚酰亚胺、不同结构的聚砜中空纤维膜在不同操作条件下,对甲醇/ 甲基叔丁基醚气相混合体系的分离性能,也研究共混改性对分离膜性能的影响。结果表明,各种材料的膜具有相近的分离行为,即随着气相中甲醇含量的增加,透过通量逐渐增大而分离系数逐渐减小,聚酰亚胺膜具有适中的透过通量,但具有很高的分离系数,在甲醇浓度低于20 % 时,分离系数可达数千。采用聚醚砜共混改性的聚酰亚胺膜在未明显降低透过通量的条件下,使醇/ 醚分离系数大幅度提高,有很好的应用前景。  相似文献   

3.
For the vapor permeation of ethanol-water mixtures, two types of dense sodium alginate (SA) membranes have been prepared: a nascent SA membrane and crosslinked SA membranes with glutaraldehyde (GA). In the vapor permeation of the concentrated ethanol-water mixtures through the SA membranes, the effects of feed temperature, cell temperature and crosslinking density in the membrane were investigated on the membrane performance, and a comparison of vapor permeation process was made with pervaporation. SA membranes having different crosslinking gradients have been fabricated by exposing the nascent membrane to different GA content of reaction solutions. The extent of the gradient was controlled by the exposing time. The permeation performance of the membranes will be discussed with the extent of the gradient. An optimal crosslinking gradient was determined in terms of flux and membrane stability. The separation of ethanol-water mixtures through the membrane with the optimal crosslinking gradient was carried out by vapor permeation and the permeation performance will be discussed, and compared with pervaporation.  相似文献   

4.
Chitosan-silica hybrid membranes (CSHMs) were prepared by cross-linking chitosan (CS) with 3-aminopropyl-triethoxysilane (APTEOS). The dynamic behaviors of the CS membrane and the CSHM were investigated in pervaporation (PV) of methanol/dimethyl carbonate (MeOH/DMC) mixtures. The membranes were characterized by X-ray diffraction (XRD), contact angle meter, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The transition state of PV processes were studied. During the PV processes, the amorphous region of the membranes increases and the contact angle between MeOH and the membrane decreases within a range of operating time and then remains almost constant implying a reconstruction occurred on the membrane surface. The silica is well distributed in the CSHM matrix and the thermal stability of the CSHM is enhanced. The time for a PV process to reach a steady state decreases with increasing MeOH concentration or feed temperature, and it is longer for the CSHM than the CS membrane under the same operating condition. Swelling experiments show that the degree of swelling (DS) is greatly depressed by cross-linking CS with APTEOS. Sorption data indicate that the selectivity of solubility and diffusion of the CSHM are greatly improved over the CS membrane. The CSHM presents superior separation behaviors over other membranes with a flux of 1265 g/(hm(2)) and separation factor of 30.1 in PV separation of 70 wt% MeOH in feed at 50 degrees C.  相似文献   

5.
采用液相共混的方法制备了ZSM-5分子筛填充壳聚糖膜.扫描电镜表征表明分子筛在膜中分散均匀,膜表面没有明显缺陷.考察了填充膜在碳酸二甲酯/甲醇混合液中的溶胀和吸附行为,探讨了填充膜中分子筛含量及操作温度对渗透汽化膜分离性能的影响.结果表明膜优先吸附甲醇,其分离性能主要由溶解过程控制;随着膜中分子筛含量的增加,膜的溶胀度增大,渗透通量大幅度提高;渗透通量与操作温度符合Arrhenius关系式.与壳聚糖均质膜相比,ZSM-5分子筛填充壳聚糖膜对甲醇和碳酸二甲酯混合物具有更好的分离效果.  相似文献   

6.
In this paper, the acetone-cast poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) membranes were prepared by isothermally vacuum-dried at 60 °C and were employed in pervaporation of methyl acetate (MeAc) or ethyl acetate (EtAc) dissolved water solutions. DSC study on the swelling process indicated that two states of both MeAc and EtAc in their swollen P(VDF-co-HFP) membranes might exist which were the ‘bound state’ and ‘bulk state’. In addition, relative to the pure EtAc, the pure MeAc had stronger interaction with the P(VDF-co-HFP) membrane, making for its higher solubility in and lower diffusivity through the membrane. However, there is a competition between the organic permeants/water interactions and the organic permeants/polymer interactions when the P(VDF-co-HFP) membrane was tested for its pervaporative separating properties. With respect to MeAc in its water mixtures, EtAc in its water mixtures had higher solubility in the membrane instead because of its weaker interaction with water. As a result, better separating properties (higher permeate flux and separation factor) when the P(VDF-co-HFP) membrane was in pervaporation of the EtAc/water mixtures were obtained.  相似文献   

7.
Pervaporation separation has been attempted for dehydrating tetrahydrofuran (THF) from its aqueous mixtures using the novel blend membranes of poly(vinylpyrrolidone) (PVP) and chitosan (CS). Membranes were physically blended and crosslinked with glutaraldehyde as well as with sulfuric acid in methanol/sulfuric acid mixture bath to enhance their selectivity and mechanical strength properties. Membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray diffractometer (X-RD) to assess their intermolecular interactions, thermal stability and crystallinity. Sorption studies were carried out in pure as well as in different compositions of THF + water mixtures to assess polymer–liquid interactions. The membrane exhibited a high selectivity of 1025 with a reasonably high water flux value of 0.0995 kg/m2 h at the azeotropic feed composition (94.31 wt.% of THF). Effect of operating parameters such as feed composition, membrane thickness and permeate pressure were evaluated.  相似文献   

8.
通过对聚乙烯中空纤维光化学氯磺化反应,继而胺化和季胺化,制备了磺化聚乙烯中空纤维阴离子交换膜。以恒沸组成的异丙醇/水和85wt%乙醇/水为料液,测定了不同抗衡离子膜的渗透汽化性能。表明:该膜有极高的选择性,分离系数和渗透通量与抗衡离子密切相关,对卤素离子,α_W/A大小次序为I~->Br~->Cl~-;通量大小次序与之相反。三种抗衡离子膜的平衡吸收实验表明,该阴离子膜的选择渗透性不仅与醇水在膜中的溶解度有关,而且取决于平均扩散系数。  相似文献   

9.
Functionalized chitosan namely as N-methylene phosphonic chitosan (PC) and quaternized chitosan (QC) silica composite charged ultrafilter membranes were prepared by acid catalyzed sol-gel method in the aqueous media and gelated in methanol for tailoring their pore structure. These membranes were employed for developing a simple membrane process for pH sensitive protein fractionation under coupled driving forces (pressure and electric gradient). Protein transmission (selectivity) and membrane throughput across both membranes were studied using binary mixture of protein under different gradients at pH points: 2.0, 4.8, 10.7, and 13.0. It was concluded that separation from the binary mixture of BSA-LYS, separation LYS at pH 4.8 (pI of BSA) using negatively charged PC-Si membrane or separation BSA at pH 10.7 (pI of LYS) using positively charged QC-Si membrane, was possible with high selectivity. Also in all cases, due to coupling of driving forces, filtrate flux and selectivity were enhanced by several folds. Furthermore, applied electric gradient progressively increased the separation factor values, which was close to 10 for PC-Si and 15 for QC-Si membranes. Relatively high separation value of individual protein from binary mixture and filtrate velocity suggests the practical usefulness of this novel process and biopolymer membranes.  相似文献   

10.
Metal–organic frameworks (MOFs) are made up of metal centers and organic binders with larger surface area and distinct pore structures. Particularly significant advancement in MOF membranes has been achieved in three different directions: preparation of MOF membranes with larger surface area, improving the membrane performance by surface modification, and its usage with added features. However, its significance has not been completely known and concluded yet. MOF membranes are used in a variety of membrane-based separation like gas permeation, nanofiltration, pervaporation, membrane distillation, etc. This research aims to synthesize MOFs (ZIF-8 and ZIF-67) and MOF membranes (ZIF-8/PVDF and ZIF-67/PVDF) and used them in the pervaporative separation of the methanol/water mixture. MOFs and MOF membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetry analysis. Methanol/water mixtures were be used to study the performance of the prepared membranes. A study on the process parameters such as temperature (40, 45, 50, and 55°C), feed pressure (4, 8, 12, and 16 psi), and feed composition (10%, 20%, 30%, and 40% of water) was carried out to examine the effect of each process parameters for pure membrane. In contrast, Taguchi screening design was used to screen the most influential process variable. The optimized conditions based on Taguchi screening method were 55°C, 12 psi, and 40 %vol of water in feed. The obtained total flux of 425 L/m2h was observed for M3 membrane. As feed temperature increased, the total flux of all three membranes was increased.  相似文献   

11.
A new surface deposition method was researched to decrease pore size of ceramic membranes. CaCO3 was chosen to modify the top layer of γ-alumina membranes prepared by sol–gel processes. Separation of gaseous acetone/water mixtures by vapor permeation was carried out to characterize the membranes. Improvement of membrane separation property after modifications and SEM photographs proved that this new method was effective to reduce the membrane pore size.  相似文献   

12.
Individual (single) component pervaporation study helped to address some of the basic curiosities for the process of pervaporation. Investigations were carried out to focus on the location of vaporization during single component pervaporation. A mathematical model was developed for single component permeation during pervaporation, assuming two zones inside the membrane; namely, liquid permeation and vapour permeation zones. Considering a pressure distribution across the thickness of the membrane, Kelvin equation (saturation vapour pressure gets modified inside the membrane due to permeant membrane interactions) proved to be useful in developing the model. According to the model assumptions, the sorbed liquid first transports as liquid; and as soon as it finds the region, where pressure is Kelvin pressure, it evaporates and continues to transport as vapor. Further, the developed model was found to be useful in describing the flux in terms of downstream pressure variations. Accordingly, location of vaporization was determined. It was observed that vapor phase transport dominates in the membrane at low downstream pressures. Importance of consideration for both the phases, during modeling, is discussed. Activity profile, determined across the membrane, was observed to be in agreement with the experimental observations (as per literature). The study may help to establish a fundamental framework in turn to model for binary and/or multi-component mixtures.  相似文献   

13.
Direct contact membrane distillation of humic acid solutions   总被引:3,自引:0,他引:3  
Direct contact membrane distillation process has been conducted for the treatment of humic acid solutions using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their non-wettability, pore size and porosity. Water advancing and receding contact angles on the top membrane surfaces were measured. Experiments were also carried out employing pure water as feed at different mean temperatures and the water vapor permeance of each membrane was determined. Different humic acid concentrations in the feed solution, pH values and transmembrane temperature difference were tested. The direct contact membrane distillation technique is more adequate for the treatment of humic acid solutions than the applied pressure-driven separation processes, as lower membrane fouling was detected.  相似文献   

14.
Five different copolymer membranes, i.e. copolymer of acrylonitrile with 2-hydroxyethyl methacrylate (PANHEMA), vinyl acetate (PANVAC) and methyl methacrylate (PANMMA) and styrene with vinyl acetate PSTYVAC) and methyl methacrylate (PSTYMMA) were synthesized, each with two different copolymer compositions (i.e. PANHEMA-1, PANHEMA-2, etc.). The copolymer membranes were synthesized on the basis of their relative solubility parameters with respect to acetone and hydrophilicity with respect to water. These membranes were used for pervaporative dehydration of acetone over the entire concentration range of 0–100 wt% water as well as acetone separation over 0–44 wt% acetone in feed. The acrylonitrile copolymers showed water selectivity with maximum water flux and selectivity for PANHEMA-2 copolymer (29.3 g/(m2 h), 16.73, respectively, for 2.5 wt% water in feed) while the styrene copolymers showed maximum acetone selectivity with reasonable acetone flux for PSTYMMA-1 copolymer (7.12 g/(m2 h), 12.61, respectively, for 1.6 wt% acetone in feed) membrane. The influence of one permeant on permeation of the other permeant was also studied in terms of permeation factor.  相似文献   

15.
It is known that hydrophobic microfiltration membranes can be used for demulsification of oil-in-water (o/w) emulsion due to coalescence of oil droplets in membrane pores. This study demonstrates that a hydrophilic polymer membrane can be used for the demulsification of surfactant-stabilized water-in-oil (w/o) emulsions. The success of demulsification is dependent on the type of emulsions and membrane used. Membrane pore size and transmembrane pressure were found to affect demulsification efficiency (DM), while other factors, such as membrane thickness and initial water content have slight or almost no effect. A coalescence mechanism of the demulsification phenomenon is also discussed. The separation process is not based on sieving effects due to a difference in membrane pore size, but is determined by droplet interactions with membrane surface.  相似文献   

16.
Different viscosity grade sodium alginate (NaAlg) membranes and modified sodium alginate membranes prepared by solution casting method and crosslinked with glutaraldehyde in methanol:water (75:25) mixture were used in pervaporation (PV) separation of water+acetic acid (HAc) and water+isopropanol mixtures at 30 °C for feed mixtures containing 10–50 mass% of water. Equilibrium swelling experiments were performed at 30 °C in order to study the stability of membrane in the fluid environment. Membranes prepared from low viscosity grade sodium alginate showed the highest separation selectivity of 15.7 for 10 mass% of water in the feed mixture, whereas membranes prepared with high viscosity grade sodium alginate exhibited a selectivity of 14.4 with a slightly higher flux than that observed for the low viscosity grade sodium alginate membrane. In an effort to increase the PV performance, low viscosity grade sodium alginate was modified by adding 10 mass% of polyethylene glycol (PEG) with varying amounts of poly(vinyl alcohol) (PVA) from 5 to 20 mass%. The modified membranes containing 10 mass% PEG and 5 mass% PVA showed an increase in selectivity up to 40.3 with almost no change in flux. By increasing the amount of PVA from 10 to 20 mass% and keeping 10 mass% of PEG, separation selectivity decreased systematically, but flux increased with increasing PVA content. The modified sodium alginate membrane with 5% PVA was further studied for the PV separation of water+isopropanol mixture for which highest selectivity of 3591 was observed. Temperature effect on pervaporation separation was studied for all the membranes; with increasing temperature, flux increased while selectivity decreased. Calculated Arrhenius parameters for permeation and diffusion processes varied depending upon the nature of the membrane.  相似文献   

17.
MCM-48 membranes have been prepared on alumina supports of different pore sizes. A battery of characterization techniques has been used to study the physical properties and the quality of the membranes prepared. The highest quality membranes were prepared on supports with pore size of up to 60 nm. The MCM-48 membranes were tested in the separation of gas phase mixtures and a cyclohexane/O2 selectivity higher than 270 was obtained. The selective separation of organic compounds from inert components is a result of the cooperative effects of capillary condensation in MCM-48 pores and of the specific interactions of the permeating compounds and the membrane material.  相似文献   

18.
通过二次生长法在α-Al2O3支撑体表面合成了PHI分子筛膜,考察了晶种合成方式、二次生长合成温度及时间对形成PHI分子筛膜的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)对合成膜进行表征.结果表明:载体表面合成出了PHI分子筛;二次生长法合成出的PHI分子筛膜连续、致密,膜厚约为20 μm.利用渗透汽化技术对甲醇、乙醇、异丙醇和叔丁醇等不同分子尺寸的醇/水体系进行分离性能的研究,同时考察原料液中水含量对所制备的PHI分子筛膜的分离性能的影响.结果表明:PHI分子筛膜对几种醇水体系都具有良好的分离效果,随着水含量的增加,水的渗透通量呈增大趋势,乙醇和甲醇的理想分离因子有所降低,异丙醇和叔丁醇的理想分离因子增大.  相似文献   

19.
Micellar-enhanced ultrafiltration (MEUF) of phenol and a cationic surfactant, cetylpyridinium chloride (CPC), is studied using two polysulfone membranes of 5- and 50-kDa molecular weight cutoff (MWCO) and two ceramic membranes of 15- and 50-kDa MWCO. Filtrations are run under laminar cross-flow and steady-state conditions. The effect of operation variables (pressure and retentate flux) and membrane properties (nature and MWCO) on permeate flux, surfactant, and phenol rejections is analyzed. The permeate flux depends, among other variables, on the fouling favored by membrane-micelle interactions, which are strongest in the 50-kDa MWCO ceramic membrane. On the other hand, surfactant rejection is mainly determined by the pore size and influenced by the pressure for both 50-kDa MWCO membranes. An equilibrium distribution constant, K(s), of phenol between surfactant micelles and water is calculated. Its value is not significantly affected by operation conditions and membrane type. K(s) is also approximately 20% lower than the value determined in a previous work with batch dead-end ultrafiltration.  相似文献   

20.
Experimental results for the pressure-driven membrane separation of cyclic hydrocarbons (1,3-cyclohexadiene, cyclohexene, and cyclohexane) from dilute binary aqueous solution using asymmetric cellulose acetate membranes are reported here. In these experiments, total solution fluxes are significantly lower than pure water fluxes at the same applied pressure; this flux reduction is attributed to strong solute—membrane affinity rather than to the osmotic pressure of either the bulk retentate or the boundary layer. An empirical parameter, Z, is used to describe flux reduction. A theoretically based friction parameter, B, is derived assuming the membrane can be represented as an ideal, finely porous membrane; this parameter indicates the influence of solute—membrane affinity on flow through the pores of the membrane. Both the empirical parameter Z and the theoretically based parameter B relate flux reduction to concentrations in the system. Both Z and B increase as solute—membrane affinity increases and decrease as membrane pore size increases. It is concluded that both the empirical flux reduction parameter, Z, and the theoretically based friction parameter, B, indicate the same system properties: solute—membrane affinity and membrane pore size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号