首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purpose of the Water Framework Directive is to ensure the quality of the natural water across Europe. In this context, passive samplers have shown interesting capacities for the monitoring of contaminants in aqueous ecosystems. They allow the measurement of time-weighted average concentrations, overcoming many drawbacks of the spot-sampling techniques known to be expensive and time consuming. However, application of passive samplers such as polar organic chemical integrative samplers (POCIS) for the monitoring of hydrophilic contaminants requires calibration to define compound sampling rates; key parameters to deduce the pollutant water concentrations from the amounts of pollutants accumulated by the device. Unfortunately, sampling rates are influenced by a range of environmental factors; in that respect, a question remains: is it not evident to know to what extent the sampling rates obtained in laboratory experiments can be used in field conditions? The problem can be solved for hydrophobic samplers by using performance reference compounds (PRCs), and an ongoing challenge for POCIS is focused on the improvement of the quantitative aspect of this family of samplers. In this study, potential PRCs have been selected during a specific experiment and their performance was tested in the laboratory under two hydrodynamic conditions. Results revealed a good proportionality between elimination rates of PRCs and sampling rates of chemicals. Afterwards, the application of the approach under environmental conditions was assessed by deploying POCIS in the Arcachon Bay (France) where POCIS–PRC-derived water concentrations appear to be close to the simultaneous grab-sampling results.
Figure
Relationship between Irgarol sampling rate and DIA elimination rate  相似文献   

2.
Knowledge on the presence of micro-pollutants, in particular emerging contaminants, such as pharmaceuticals, biocides or some pesticides, in semi-enclosed coastal areas, where fish farms are installed, is very limited. This article shows data on the presence of micro-pollutants over 1 year monitoring campaign carried out in a fish farm placed on the Mediterranean Sea. With this work, the results of the development of an analytical procedure which, makes use of passive sampling techniques (with polar organic chemical integrative samplers, POCIS, pharmaceutical configuration) and of the LC-QLIT-MS system, are presented. The development of the analytical procedure entail laboratory-based calibration with the samplers POCIS, for calculating uptake rates and sampling rates of compounds representative of a wide range of polarity (4.56 ≥ log Kow ≥ −0.12). The uptake of the target compounds in the sampler POCIS, follows a linear pattern for most compounds, and sampling rates varied from 0.001 to 0.319 l/d. The calibration experiments have shown that POCIS pharmaceutical configuration could be used for sampling other non-target compounds, such as pesticides and biocides with a log Kow ≤ 4. The sampling rates for each selected compound were obtained using spiked seawater for further estimation of time-weighted average (TWA) concentration of micro-pollutants in the water column, during the field study. An analytical method was developed with the LC-QLIT-MS system and validated to ensure a satisfactory performance for the detection of the target micro-pollutants in water. The limits of detection (LODs) achieved were between 0.01 and 1.50 μg/l. During the monitoring campaign, among the selected compounds, metronidazole, erythromycin, simazine, atrazine, diuron, terbutryn, irgarol, trimethoprim, carbaryl, flumequine, TCMTB and diphenyl sulphone (DPS) were detected. Most of target compounds found were at average concentrations which ranged from 0.01 to 75 ng/l. Irgarol, simazine, diuron, atrazine and DPS were the micro-pollutants most frequently detected over the period of the monitoring programme carried out.  相似文献   

3.
Developments in the sampling and determination of pesticides in ambient air have been discussed and data on the occurrence of pesticides in atmosphere have been presented. Developments in active sampling methods were reviewed and the different materials used for trapping pesticides from gas and particulate phases were discussed. Likewise, the use and developments of passive air samplers were reviewed. This article pays special attention to the analysis of pesticides trapped from ambient air, and recapitulate the procedures for extraction, clean-up and determination of these substances. Improvements in sampling procedures, analytical methods and monitoring activities are necessary to advance the knowledge of occurrence of currently used pesticides in atmosphere and their impact over environment and humans.  相似文献   

4.
It was demonstrated that four out of six of the very polar organophosphorus pesticides (OPs), i.e. acephate, methamidophos, monocrotophos, omethoate, oxydemeton-methyl and vamidothion, could not be extracted from water using commonly available SPE cartridges. In addition, GC analysis on all six compounds was found to be troublesome due to their polar and thermolabile character. This initiated the development of an alternative highly sensitive and selective method for the determination of the above mentioned very polar OPs in water, based on LC-MS. Large volume (1 ml) water samples were directly injected onto an RP18 HPLC column with a polar endcapping. The latter was essential for obtaining retention and maintaining column performance under 100% aqueous conditions during the sampling. The compounds were ionized using atmospheric pressure chemical ionization and detected on a tandem mass spectrometer operated in multiple reaction-monitoring mode. The detection limits were in the range of 0.01-0.03 microg/l. Compared to conventional GC methods, the developed LC-MS procedure is very straightforward, fast and more reliable. This application demonstrates the applicability of LC-MS for analysis of polar OPs in surface, ground and drinking water, as a more favourable alternative to GC.  相似文献   

5.
Ouyang G  Pawliszyn J 《Journal of chromatography. A》2007,1168(1-2):226-35; discussion 225
Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.  相似文献   

6.
Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid‐phase extraction sorbents, prepared as a receiving phase for passive sampling. A composite silicone rubber composed of polydimethylsiloxane/poly(divinylbenzene‐co‐N‐vinylpyrrolidone) was selected by batch experiments for its high sorption properties for pesticides with octanol‐water partition coefficients ranging from 2.3 to 5.5. We named this composite material “Polar/Apolar Composite Silicone Rubber”. A structural study by scanning electron microscopy confirmed the homogeneous dispersion of the sorbent particles and the encapsulation of particles within the polydimethylsiloxane matrix. We also demonstrate that this composite material is resistant to common solvents used for the back‐extraction of analytes and has a maximal resistance temperature of 350°C. Therefore, the characteristics of the “Polar/Apolar Composite Silicone Rubber” meet most of the criteria for use as a receiving phase for the passive sampling of pesticides.  相似文献   

7.
The presence of estrogens in the aquatic environment has been the target of several studies in the last decade. Newly developed passive sampling techniques for polar organic chemicals show great promise for the assessment of long-time exposure of aquatic organisms to emerging contaminants. In the present work, two configurations of the Chemcatcher® passive sampler have been tested for their applicability to the analysis of seven estrogens in water. Accumulation experiments in the laboratory, to calculate the uptake rates, and a field trial show that the polar configuration of this device may be used for the efficient sampling and determination of estrogens in water. Time weighted average concentrations were determined in the field trial and compared with spot sampling concentrations. The detection of estriol using passive sampling, although not found with spot sampling, clearly demonstrates the value of this technique in assessing relevant concentrations of estrogens in the aquatic media.  相似文献   

8.
Although polar organic contaminants (POCs) such as pharmaceuticals are considered as some of today's most emerging contaminants few of them are regulated or included in on-going monitoring programs. However, the growing concern among the public and researchers together with the new legislature within the European Union, the registration, evaluation and authorisation of chemicals (REACH) system will increase the future need of simple, low cost strategies for monitoring and risk assessment of POCs in aquatic environments. In this article, we overview the advantages and shortcomings of traditional and novel sampling techniques available for monitoring the emerging POCs in water. The benefits and drawbacks of using active and biological sampling were discussed and the principles of organic passive samplers (PS) presented. A detailed overview of type of polar organic PS available, and their classes of target compounds and field of applications were given, and the considerations involved in using them such as environmental effects and quality control were discussed. The usefulness of biological sampling of POCs in water was found to be limited. Polar organic PS was considered to be the only available, but nevertheless, an efficient alternative to active water sampling due to its simplicity, low cost, no need of power supply or maintenance, and the ability of collecting time-integrative samples with one sample collection. However, the polar organic PS need to be further developed before they can be used as standard in water quality monitoring programs.  相似文献   

9.
The presence of both pharmaceuticals and pesticides in the aquatic environment has become a well-known environmental issue during the last decade. An increasing demand however still exists for sensitive and reliable monitoring tools for these rather polar contaminants in the marine environment. In recent years, the great potential of passive samplers or equilibrium based sampling techniques for evaluation of the fate of these contaminants has been shown in literature. Therefore, we developed a new analytical method for the quantification of a high number of pharmaceuticals and pesticides in passive sampling devices. The analytical procedure consisted of extraction using 1:1 methanol/acetonitrile followed by detection with ultra-high performance liquid chromatography coupled to high resolution and high mass accuracy Orbitrap mass spectrometry. Validation of the analytical method resulted in limits of quantification and recoveries ranging between 0.2 and 20 ng per sampler sheet and between 87.9 and 105.2%, respectively. Determination of the sampler-water partition coefficients of all compounds demonstrated that several pharmaceuticals and most pesticides exert a high affinity for the polydimethylsiloxane passive samplers. Finally, the developed analytical methods were used to measure the time-weighted average (TWA) concentrations of the targeted pollutants in passive samplers, deployed at eight stations in the Belgian coastal zone. Propranolol, carbamazepine and seven pesticides were found to be very abundant in the passive samplers. These obtained long-term and large-scale TWA concentrations will contribute in assessing the environmental and human health risk of these emerging pollutants.  相似文献   

10.
POCIS (polar organic chemical integrative samplers) are increasingly used for sampling polar compounds. Although very efficient for a wide range of pollutants, the classic configuration of the device has a number of limitations, in particular for the sampling of highly polar analytes and hydrophobic compounds. This study presents a new version of the POCIS passive sampler which uses a highly porous Nylon membrane of 30 μm pore size, enabling the sampling of hydrophobic pollutants and improving the accumulation rate of other pollutants. This newly designed tool and the classic POCIS were both tested during a laboratory experiment to evaluate the accumulation kinetics of a selection of pesticides and pharmaceuticals. The observed results show unexpected accumulation kinetics for the new version of POCIS. To explain the data, the use of an intraparticulate diffusion model was required, which also enabled us to propose another explanation of the burst effect observed with the classic POCIS, primarily related to the potential wetting of the device as the first step in the accumulation of compounds.
Figure
Picture of classical and nylon version of POCIS  相似文献   

11.
The current state-of-the-art of passive sampling and/or extraction methods for long-term monitoring of pollutants in different environmental compartments is discussed in this review. Passive dosimeters that have been successfully used to monitor organic and inorganic contaminants in air, water, sediments, and soil are presented. The application of new approaches to the determination of pollutants at the sampling stage is discussed. The main milestones in the development of passive techniques for sampling and/or extraction of analytes, and in biomonitors used in environmental analysis, are summarized in this review. Passive samplers and biomonitors are compared.  相似文献   

12.
Residues of the herbicides simazine, metribuzin, metolachlor, trifluralin, atrazine, and two metabolites of atrazine, deisopropylatrazine (DIA) and deethylatrazine (DEA), are surveyed in the surface and groundwater of the Primavera do Leste region, Mato Grosso, Brazil during September and December 1998 and April 1999. Different water source sampling stations of groundwater (irrigation water well, drinking water well, and water hole) and surface water (dam and river) are set up based on agricultural land use. A solid-phase extraction procedure followed by gas chromatography-nitrogen-phosphorus detection is used for the determination of these compounds. All compounds are detected at least once in water samples. A temporal trend of pesticide contamination is observed, with the highest contamination frequency occurring in December during the main application season. Metribuzin shows the highest individual detection frequencies throughout the monitoring period, followed by metolachlor, simazine, and DEA. The maximum mean concentrations of pesticides in this study are in the range from 0.14 to 1.7 microg/L. We deduct that the contamination of water resources is predominantly caused by non-point pollution of pesticides used in intensive cash-crop cultures of the Cerrado area. Therefore, a continuous monitoring of pesticide concentrations in water resources of this tropical region is necessary to detect the longer term contamination trends and developing health risks.  相似文献   

13.
We have investigated the ability of an integrative sampler for polar organic chemicals to sequestrate a group of common and highly hazardous cyanobacterial toxins—microcystins. In a pilot experiment, commercially available passive samplers were shown to effectively accumulate microcystins after 7 days’ exposure in the field. To find the most efficient configuration for sequestration of microcystins, four different porous membranes (polycarbonate, polyester, polyethersulfone and nylon) and two sorbents (Oasis HLB and Bondesil-LMS) were evaluated in the laboratory experiments, where samplers of different configuration were exposed to microcystins (microcystin-RR and microcystin-LR) for 14 days under steady conditions. We observed differences in sampling rates and amounts of accumulated microcystins depending on the sampler configurations. The samplers constructed with the polycarbonate membrane and Oasis HLB sorbent (2.75 mg/cm2) provided the highest sampling rates (0.022 L/day for microcystin-RR and 0.017 L/day for microcystin-LR). To the best of our knowledge, the present study is the first reporting application of passive samplers for microcystins, and our results demonstrate the suitability of this tool for monitoring cyanotoxins in water.  相似文献   

14.
The distribution of 166 pesticides of various classes (amides, dinitroanilines, pyrethroids, thiocarbamates, triazines, etc.) was studied at 20 ± 1°C in multiple extraction systems. The distribution constants (P) of pesticides between hexane and a polar phase are calculated. Based on the distribution constants of pesticides, a possibility of using distribution chromatography for their identification was considered. It is demonstrated on an example of pesticides with similar retention times that the hexane–water extraction system is most selective and universal for the identification of most compounds by gas and liquid chromatography. Using this system, logarithms of distribution constants of the substances under consideration are maximally differentiated and ranged from–1.32 to 8.0. Such a range makes it possible, with an acceptable volume ratio of the hexane and water phases (up to 1: 500), to achieve a significant decrease in the peak area of the pesticide in hexane when it is washed with water in accordance with its P value up to logP = 3.0. In the case of more hydrophobic pesticides, extraction systems of hexane–ethylene glycol, hexane–acetonitrile, and hexane–mixtures of acetonitrile with water and ethylene glycol can be used.  相似文献   

15.
A new passive sampler was designed and characterized for the determination of free copper ion (Cu2+) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k0) and the sampler-water partition coefficient (Ksw), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty).  相似文献   

16.
Procedures for the determination of polar pesticides in surface and ground water after their preconcentration by dispersive liquid-liquid microextraction and solid-phase extraction on Oasis® HLB (3 cc/60 mg) extraction cartridges are proposed. Conditions for the separation and determination of pesticides from the following classes by micellar electrokinetic chromatography were chosen: arylhydroxycarboxylic acids, sym-triazines, triazinones, urea derivatives, neonicotinoids, carbamates, triazoles, imidazoles, benzimidazoles, and organophosphorus compounds. The determination limits of pesticides in water were 0.5–20 μg/L with consideration for preconcentration. The relative standard deviation of the results of analysis was no higher than 10%.  相似文献   

17.
Organochlorine, organophosphate pesticides and fungicides in fruits and vegetables were analyzed using disposable pipette extraction (DPX) followed by gas chromatography–mass spectrometry-selective ion monitoring (GC/MS-SIM). The intrinsic rapid mixing capabilities of DPX result in fast and efficient extractions, and eluates are concentrated by using minimal elution solvent volumes rather than solvent evaporation methods. Matrix-matched calibrations were performed with reversed phase mechanisms (DPX-RP), and the limits of detection (LOD) were determined to be lower than 0.1 μg/mL for all targeted pesticides in carrot and orange sample matrices. Coefficients of determination (r2) were greater than 0.995 for most studied pesticides. DPX-RP exhibited recoveries between 72 and 116% for nonpolar and slightly polar pesticides (log P > 2) with most of the recoveries over 88%. Only very polar pesticides (e.g., acephate, mathamidophos) were not extracted well using DPX-RP.  相似文献   

18.
Isocyanates are important in industrial hygiene and workplace monitoring. Owing to their severe acute toxicity and sensitizing properties, analytical methods with high sampling efficiency and sensitivity in the low ppb to ppt range are required. The reactivity of isocyanates necessitates initial derivatization with nucleophilic agents—usually amines—for stabilization and enrichment; this is often followed by chromatographic separation with spectroscopic, electrochemical, or mass spectrometric detection. Sampling strategies for airborne isocyanates comprise active, i.e. pumped, or passive, i.e. diffusive, methods; the method selected depends on the application. Whereas active methods rely mainly on impingers, reagent-coated filters, or sampling tubes, passive samplers make use of reagent-coated filters, the surface of which is connected to the air sample by diffusion channels. Because airborne isocyanates are prone to occur in different forms, i.e. as vapors, as aerosols, or adsorbed on particulate matter, denuder sampling has been introduced, thus enabling simultaneous collection of gaseous and aerosol isocyanates. The first part of this review summarizes chemical methods and reagents which have been introduced for derivatization of airborne isocyanates. The advantages and drawbacks of the individual derivatization procedures and their combination with different detection principles are evaluated. In the second part, the most recent developments in air sampling for isocyanates, with special focus on diffusive sampling, are reviewed and critically discussed.  相似文献   

19.
In the present study, we have evaluated the effectiveness of a passive sampler for polar organic chemicals to accumulate a group of widespread and hazardous tumor-promoting toxins produced in cyanobacterial water blooms—microcystins (MC). The previously optimized configuration of the sampler based on polycarbonate membrane and Oasis HLB sorbent (2.75 mg/cm2) was validated under various exposure scenarios in laboratory and field. Calibration of the passive sampler conducted under variable conditions and concentrations of MC revealed linearity of the sampling up to 4 weeks. The sampling rates of microcystins for two different exposure scenarios were derived (e.g., MC-LR: R s = 0.017 L/day under static and 0.087 L/d under turbulent conditions). R s values were further used for calculations of time-weighted average concentrations in natural water. Improved sensitivity and selectivity of the in-house-made sampler was observed in comparison with the commercially available Polar Organic Compound Integrative Sampler (POCIS). Comparisons of grab and passive sampling methods were performed during cyanobacterial water bloom season in the Brno reservoir, Czech Republic in 2008. Data obtained by passive sampling provided a more relevant picture of the situation and enabled better assessment of potential risks. The present study demonstrated that the modification of POCIS is suitable for monitoring of occurrence and retrospective estimations of microcystin water concentrations, especially with respect to the control of drinking water quality.  相似文献   

20.
The control of pesticides in surface, drinking and groundwater is nowadays a real necessity. In the European Community, their concentration must comply with the established parametric and environmental quality standards (EQSs). Regarding the new legislation, this article updates the information concerning the monitoring of pesticides and the technical specifications for their measurement in water samples where ultra-sensitive analytical methods are required. For some compounds, like pesticides, there is still a need to improve the performance of the existing methods. High sensitive techniques like gas chromatography tandem mass spectrometry (GC–MS/MS) and liquid chromatography coupled with mass spectrometry (LC–MS) have been developed. However, for most of the substances present at trace and ultra-trace levels the extraction and preconcentration steps are so far essential for their detection. Advances at a micro scale have been made and different types of microextractions are being developed. Liquid-phase microextraction (LPME) is an example. The study of this technique has increased in the last years and some innovations have been recently reported for pesticides water analysis. This article reviews the new developed LPME-based techniques and compares its performance with the analytical specifications established for pesticides water monitoring. The results show that LPME-based techniques can be a promising tool to improve the nowadays performance of methods used in pesticides water control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号