首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hetero-atom containing bridged dinuclear metallocene complexes, (CpMCl2)2(C5H4CH2CH2OCH2CH2C5H4) [M = Ti (1), Zr (2)], have been synthesized by treating the disodium salt of the corresponding ligand (C5H5CH2CH2)2O with two equivalents of CpTiCl3 and CpZrCl3 · DME, respectively, in THF at 0 °C and characterized by 1H- and 13C-NMR, MS and IR spectroscopy. Homogenous ethylene polymerization by those complexes has been conducted systematically in the presence of methylaluminoxane (MAO). The influences of reaction parameters, such as [MAO]/[Cat] molar ratio, catalyst concentration, ethylene pressure, temperature and time, have been studied in detail. The catalytic activities of the dinuclear complexes 1 and 2 were higher than those of (MeCpTiCl2)2(C5H4CH2C6H4CH2C5H4) (3), (CpZrCl2)2(C5H4CH2C6H4CH2C5H4) (4) and the mononuclear metallocenes Cp2TiCl2 and Cp2ZrCl2, respectively. Complex 2 showed high catalytic activity at high temperature (50-100 °C) and high pressure (6 bar). The molecular weight distributions of polyethylene produced by 1 and 2 (MWD = 2.49 and 5.90) were broader than those using the corresponding mononuclear metallocenes (MWD = 2.05 and 2.15). The melting points of the polyethylene produced ranged from 129 to 133 °C, indicating a high linearity and a high crystallinity.  相似文献   

2.
5-C5Me5)M(TEA) (M = Ti, 1; Zr, 2; Hf, 3; TEA = triethanolateamine) was prepared by the reaction of (η5-C5Me5)MCl3 with triethanolamine in the presence of NEt3. The polyethylene catalytic efficiency in terms of activity decreases in the order 1/MAO > 2/MAO ? 3/MAO. In addition, the molecular weight (Mv) and melting temperature (Tm) of all the resulting polyethylene obtained by 2/MAO show the range of Mv = 91,200-356,200 and Tm = 137.0-141.9 °C, respectively; however, 1/MAO and 3/MAO gave polyethylenes with lower molecular weight (Mv = 6800-78,700) and lower melting temperature (Tm = 125.9-136.7 °C). Furthermore, 1/MAO showed significant decrease in the catalytic activity with increasing polymerization temperature though 2/MAO and 3/MAO have no dependence on the polymerization temperature.  相似文献   

3.
New half-titanocenes, CpTiCl[(OCR2CH2)NMe(CH2CR2O)] [R,R′ = H (1), R,R′ = Me, H, (2), R,R′ = Me (3)], were prepared from CpTiCl3 (4) with the corresponding alcohols in the presence of triethylamine. X-ray analysis shows that 1 has slightly distorted trigonal bipyramidal geometry around Ti. These complexes exhibited moderate catalytic activities for syndiospecific styrene polymerization in the presence of MAO and the activity increased in the order: 2 > 1 > 4 > 3 (at 50 °C), 1 > 2 > 4 > 3 (at 70 °C and 90 °C).  相似文献   

4.
Four half-sandwich cobalt complexes, CpCo(2-PyS)2 (2), CpCo(2-PyS)2 · HI (3), CpCo(2-PyS) (4-PyS) (4), (CpCo)2(μ-PhS)2(μ-2-PyS)I (5) [Cp = pentamethylcyclopentadienyl, 2-PyS = 2-pyridinethiolate, 4-PyS = 4-pyridinethiolate, PhS = benzenethiolate] were successfully synthesized by the reactions of 2-pyridinethione, lithium 4-pyridinethiolate and lithium benzenethiolate with CpCo(2-PyS)I (1), respectively. Complexes 2 and 3 have the structures with two 2-pyridinethiolates ligands coordinated to the cobalt atom. Two different pyridinethiolates ligands can be identified in complex 4. The molecular structure of 5 consists of two Cp-Co fragments, which are triply bridged by three sulfur atoms from different ligands. The molecular structures of 3 and 5 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

5.
The phenyltrihydroborate complexes, Cp2ZrCl{(μ-H)2BHPh}, 1, and Cp2Zr{(μ-H)2BHPh}2 · (1/2 toluene), 2, were prepared from the reactions of Cp2ZrCl2 with one and two moles of LiBH3Ph. The Zr-H-B bonds in 2 are stable under vacuum at 100 °C for hours without significant decomposition. An inductive effect has been proposed for this strong interaction. This hydrogen bridge bond can be broken upon reacting with the Lewis base N(C2H5)3 to produce (C2H5)3N · BH2Ph and the zirconium hydride compound Cp2ZrH{(μ-H)2BHPh}, 3. Compound 3 also can be prepared from the reaction of Cp2ZrHCl with LiBH3Ph. The reaction of 1 with the Lewis acid B(C6F5)3 is solvent dependent, the metathesis product Cp2ZrCl{(μ-H)2B(C6F5)2}, 4, was formed in the toluene solution, whereas the ionic complex [Cp2ZrCl(OEt2)][HB(C6F5)3], 5, was isolated from the ether solution. The reaction of titanocene dichloride, Cp2TiCl2, with LiBH3Ph produced a 17-electron, paramagnetic complex, Cp2Ti{(μ-H)2BHPh}, 6. Single crystal X-ray structures of 1, 2, 3, 4, 5, and 6 were also determined. A coplanar structure of the four bridge hydrogens in 2 was observed.  相似文献   

6.
Both symmetrical and unsymmetrical tetramethylphenyl-linked iminopyridines, 1,4-{(2-C5H4N)RCN}2-2,3,5,6-Me4C6 [R = H (L1a), Me (L1b)] and 1-{(2-C5H4N)HCN}-4-{(2-C5H4N)MeCN}-2,3,5,6-Me4C6 (L1c), have been prepared in good yield using straightforward condensation strategies. The molecular structures of L1a and L1c reveal the adjacent imino and pyridyl nitrogen atoms to adopt transoid configurations. Interaction of L1x with two equivalents of NiX2 [NiX2 = (DME)NiBr2 (DME = 1,2-dimethoxyethane), NiCl2] in n-BuOH at elevated temperature affords the paramagnetic bimetallic complexes, [(L1x)Ni2X4] [L1x = L1a, X = Br (1a); L1x = L1b, X = Br (1b); L1x = L1c, X = Br (1c); L1x = L1a, X = Cl (1d)] in moderate to good yield. Adduct formation results on treatment of bromide-containing 1a-1c with DMF (dimethylformamide) to yield dicationic [(L1x)Ni2Br2(DMF)6]Br2 [L1x = L1a (2a), L1b (2b), L1c (2c)], while with chloride-containing 1d the neutral species [(L1a)Ni2Cl4(DMF)4] (3) is obtained. Activation of 1a-1d and 2c with excess methylaluminoxane (MAO) generates active ethylene polymerisation catalysts (1b/MAO > 1c/MAO > 1a/MAO ∼ 1d/MAO > 2c/MAO) affording mixtures of waxes and low molecular weight solid polyethylene. Multinuclear NMR and GC analysis of the waxy components reveal methyl branched materials that contain mostly internal unsaturation along with low levels of α-olefins. Broad molecular weight distributions are observed for all the polymers obtained, with that from 1b/MAO leading to the highest molecular weight. Single crystal X-ray diffraction studies have been performed on L1a, L1c, 2a-2c and 3.  相似文献   

7.
The reactions of tri(bis(ethyl)amino)phosphorus ylide (Et2N)3PCH2 with cyclopentadienyl (Cp) metal (V) tetrachloride CpMCl4 (M = Nb 1; Ta 3) and pentamethylcycopentadienyl (Cp) metal (V) tetrachloride CpMCl4 (M = Nb 2; Ta 4) were investigated. The hexa-coordinate ylide adducts complexes 5 (CpNbCl4(H2CP(NEt2)3)), 6 (CpNbCl4(H2CP(NEt2)3)) and 8 (CpTaCl4(H2CP(NEt2)3)) with pseudo-octahedral geometry were structurally analyzed with X-ray diffraction. Compound 4 (CpTaCl4) reacted with three molar equivalent of phosphorus ylide to form one ionic complex 9 ([H3C-P(NEt2)3][CpTaCl5]) which was also structurally analyzed with X-ray diffraction. The possible formation mechanism of compound 9 has been discussed.  相似文献   

8.
The binuclear half-sandwich iridium complexes {CpIrCl2}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (3) and {CpIr[E2C2(B10H10)]}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (E = S(5a), Se(5b)) were prepared from the reaction of [CpIrCl(μ-Cl)]2 or the “pseudo-aromatic” half-sandwich iridium complex CpIr[E2C2(B10H10)] (E = S(4a), Se(4b)) with a tetrathiafulvalene (TTF) derivative 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (2) at room temperature. The complexes (3, 5a and 5b) have been fully characterized by IR and NMR spectroscopy, as well as elemental analysis. And the molecular structures of 2 and 5a were established through X-ray crystallography. It is interesting that infinite tunnels are created by repeating ‘buckled bowl’ molecules of 5a.  相似文献   

9.
Two new divalent samarocenes, Cp*′2Sm(THF) (1) and (CpPh3)2Sm(THF) (2) (Cp*′=C5Me4nPr, CpPh3=H2C5Ph3-1,2,4), were synthesized and characterized by 1H NMR and elemental analysis. The activity of 1 and 2 as butadiene polymerisation catalysts was studied, in the presence of MAO and MMAO, and compared to this of Cp*2Sm(THF)2 (3) and (Cp4i)2Sm (4) (Cp*=C5Me5, Cp4i=C5HiPr4), in the same conditions. The 1/MAO system presents the highest activity. The less active 2/MAO system leads to a high cis-1,4 regular structure up to 97%. The MMAO cocatalyst is found very sensitive to the steric hindrance of the samarocenes: the activity decreases from 1/MAO to 1/MMAO, and no activity is observed in the case of complexes 2 and 4, associated to MMAO. Complexes 1 and 2 can be both oxidized with AlMe3 to give the corresponding Sm/Al bimetallics and , respectively.  相似文献   

10.
Chalcogen-stabilized dimolybdaboranes 3-5 (3: [(CpMo)2B4H5Se(Ph)], 4: [(CpMo)2B4H3Se2(SeCH2Ph)] and 5: [(CpMo)2B3H6(BSR)(μ-η1-SR)] (R = 2,6-(tBu)2-C6H2OH)) have been isolated from the mild pyrolysis of dichalcogenide ligands, RE-E‘R (R = Ph: E = S, E‘ = Se; R = CH2Ph, [2,6-(tBu)2-C6H2OH]: E = E‘ = Se, S) and [(CpMo)2B4H8], 2, an intermediate generated from the reaction of [CpMoCl4] (1) (Cp = η5-C5Me5), with [LiBH4.thf]. The geometry of [(CpMo)2B4H5Se(Ph)] is similar to that of [(CpMo)2B5H9], in which one BH3 unit on the open face is replaced by a triple bridged selenium atom. All the compounds have been characterized in solution by 1H, 11B, 13C NMR and IR spectroscopy and elemental analysis. The structural types were unequivocally established by X-ray crystallographic analysis of compounds 3-5.  相似文献   

11.
Reaction of (omp) disodium(phenylenedimethylene)dicyclopentadienide C6H4(CH2C5H4Na)2 with 2 equiv of (MeCp)TiCl3 yields the phenylenedimethylene bridged binuclear titanocenes complexes [(MeC5H4)TiCl2](C5H4CH2C6H4CH2C5H4)[(MeC5H4)TiCl2] (345) in high yield, which were characterized by 1H NMR and elemental analysis. They were used successfully as efficient catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). The catalytic activities of 4 and 5 are somewhat higher than that of 3 and the molecular weight distributions (MWD = 4.8-6.2) of the polymers generated from the bimetallic catalytic systems are obviously higher than that obtained by conventional Cp2TiCl2.  相似文献   

12.
A new route was used to synthesize half-sandwich rhodium complexes containing both N-heterocyclic carbenes (NHC) and carborane ligands. The rhodium carbene complexes CpRh(L)[S2C2(B10H10)] (Cp = pentamethylcyclopentadienyl, L = 1,3-dimethylimidazolin-2-ylidene; 4) can be obtained from the reaction of CpRh(L)Cl2 (2) with Li2S2C2(B10H10) or from the reaction of CpRh[S2C2(B10H10)] (3) with silver-NHC complex prepared by direct reaction of an imidazolium precursor and Ag2O. Complexes 2 and 4 were characterized by IR, NMR spectroscopy, element analysis and X-ray structure analyses.  相似文献   

13.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

14.
Two half-sandwich rhodium complexes with sulfur or oxygen functionalized cyclopentadienyl ligands [η5-C5H4(CH2)2SCH2CH3]RhI23, {[η5-C5H4(CH2)2OCH3]RhI2}24 have been synthesized and characterized by IR, 1H-NMR spectra and Elemental analyses. The molecular structures of complexes 3 and 4 have been determined by X-ray crystallographic analysis. Complexes 3, 4 with a pendent arm on cyclopentadienyl ligand have been tested as catalysts for ethylene and norbornene polymerization in the presence of MAO. Complexes 3 and 4 kept high activities of ca. 106 g PE mol−1 Rh h−1 with morderate molecular weight (Mw ≈ 105 g mol−1) of polyethylene in the ethylene polymerization. Catalytic activities, molecular weights of polyethylene have been investigated under the various reaction conditions.  相似文献   

15.
Two rigid benzene centered dinuclear metallocene complexes C6H2[(CH2C5H4)2MCl2]2, M = Ti (1), Zr (2) have been prepared by treating two equivalents of TiCl4 and ZrCl4 with the tetralithium salt of the ligand C6H2(CH2C5H5)4-1,2,4,5 in toluene and characterized by 1H NMR and elemental analysis. Both complexes are effective catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). The influence of [MAO]/[Cat] molar ratio, catalyst concentration, polymerization temperature and time has been tested in detail. The catalytic activity of complex 2 is more than two times higher than that of complex 1, which is still more active than that of the tetranuclear titanocene C6H2[CH2C5H4Ti(C5H5)Cl2]4-1,2,4,5 (5). On the other hand, the catalytic activities of 1 and 2 is slightly lower than that of the dinuclear metallocene complexes C6H4[CH2C5H4Ti(C5H4CH3)Cl2]2-1,3 (3) and C6H4[CH2C5H4Zr(C5H5)Cl2]2-1,3 (4), respectively, which is related to the limited intermolecular rotation of the metallocene units in 1 and 2. The melting points above 130 °C indicate a polyethylene formed by complexes 1 and 2 with highly linear and highly crystalline. GPC spectra show that polyethylene produced by complexes 1 and 2 has a broad and even bimodal molecular weight distribution (MWD).  相似文献   

16.
The 16-electron half-sandwich complexes CpRh[E2C2(B10H10)] (E = S, 1a; Se, 1b) react with [Ru(COD)Cl2]x under different conditions to give different types of heterometallic complexes. When the reactions were carried out in THF for 24 h, the binuclear Rh/Ru complexes [CpRh(μ-Cl)2(COD)Ru][E2C2(B10H10)] (E = S, 2a; Se, 2b) bridged by two Cl atoms and the binuclear Rh/Rh complexes (CpRh)2[E2C2(B10H10)] (E = S, 3a; Se, 3b) with direct Rh-Rh bond can be isolated in moderate yields. [Ru(COD)Cl2] fragments in 2a and 2b have inserted into the Rh-E bond. If the [Ru(COD)Cl2]x was reacted with 1a in the presence of K2CO3 in methanol solution, the product [CpRh(COD)]Ru[S2C2(B10H10]] (4a), K[(μ-Cl)(μ-OCH3)Ru(COD)]4 (5a) and 3a were obtained. The B(3)-H activation in complex 4a was found. However, when the reaction between 1b and [Ru(COD)Cl2]x was carried out in excessive NaHCO3, the carborane cage opened products {CpRh[S2C2(B9H10)]}Ru(COD) (6b), {CpRh[S2C2(B9H9)]}Ru(COD)(OCH3) (7b) and 3b were obtained. All complexes were fully characterized by their IR, 1H NMR and elemental analyses. The molecular structures of 2a, 2b, 3b, 4a, 5a, and 7b have been determined by X-ray crystallography.  相似文献   

17.
Reactions of phenylethynyl lithium with substituted cyclopentenones gave the corresponding pendant phenylethynyl substituted cyclopentadienes. Subsequent deprotonation and transmetallation with TiCl4·2THF, ZrCl4, and CpZrCl3 yielded the alkyne-functionalized metallocene complexes [C5Me4(CCPh)]2MCl2 [M = Ti (1), Zr (2)], Cp[C5Me4(CCPh)]ZrCl2 (3), and Cp[C5H2R′2(CCPh)]ZrCl2 [R′ = Me (4), Ph (5)]. These complexes were fully characterized by 1H NMR, 13C NMR, MS spectra, and elemental analysis. The molecular structure of 2 was determined by single crystal X-ray diffraction analysis. Ethylene polymerization was studied with these complexes in the presence of methylaluminoxane (MAO).  相似文献   

18.
Mono-demethylation of Cp2Ti(CH3)2 in dichloromethane with 1 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7) and [η5-(C5H4COOH)]W(CO)3CH3 (8) gives Cp2Ti(CH3){[OC(O)C5H4]Cr(CO)2NO} (9), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2Cl} (10), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2I} (11) and Cp2Ti(CH3){[OC(O)C5H4]W(CO)3CH3} (12), respectively. The structure of 10 has been solved by X-ray diffraction studies. One of the nitrosyl groups is located at the site away from the exocyclic carbonyl carbon of the Cp(Cr) ring with twist angle of 178.1°. All the data reveals that Cp2Ti(CH3)- is a strong electron-donating group. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) in compounds 5-12, using HetCOR NMR spectroscopy, as compared with the NMR data of their ferrocene analogues. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and those of 10 are compared with the calculations via density functional B3LYP correlation- exchange method.  相似文献   

19.
Cubic, trialkyl tin functionalized spherosilicates Si8O20(SnR3)8 (R = Me, nBu) and the pentagonal prismatic tin-spherosilicate Si10O25(SnMe3)10 have been synthesized and characterized. Single crystal X-ray structures were obtained for Si8O20(SnMe3)8 (I), Si8O20(SnMe3)8 · 4H2O (I · 4H2O), and Si10O25(SnMe3)10 · 4H2O (II). Structural metrics for the silicate cores observed in these structures were compared to other Si8O12 and Si10O25 cores reported in the CSD database. A pronounced tetragonal distortion of the Si8O20 cage leads to Si-O-Si bond angles that are considerably distorted in I · 4H2O when compared to other analogous Si8O12 structures described in the literature. These octameric stannylated spherosilicates readily react with metal chlorides to produce mesocopically interesting metal oxide and hybrid materials. An illustration of this is found in the reaction of the octameric anhydrous tin compound I with titanocene dichloride to give the octatitanocene derivative Si8O20(Cp2TiCl)8 · 3CH2Cl2 (III). The single crystal structure of III is also described.  相似文献   

20.
Pyrolysis of an in-situ generated intermediate, produced in the reaction of [CpMoCl4], 1, (Cp = η5-C5Me5) with [LiBH4·THF], with an excess of difuryl ditelluride in toluene at 90 °C yielded syn and anti isomers of [CpMo(O)(μ-Te)]2 (2, 3) and [Cp2Mo2O2(μ-O)(μ-Te)] (4, 5). In a similar fashion, dibenzyl diselenide yielded syn and anti isomers of [CpMo(O)(μ-Se)]2 (6, 7), along with the known nido-[(CpMo)2B4H8Se2]. Note that in parallel with 2-7, [(CpMo)2B5H9] was isolated as the major product in both cases. Compounds 2-7 have been isolated in modest yield as orange to brown crystalline solids. All the new compounds have been characterized in solution by mass, IR, 1H, 13C, 77Se and 125Te NMR spectroscopy, and the structural types were unequivocally established by crystallographic analysis of 2-4 and 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号