首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
The aim of the study was to investigate the effect of the natural antioxidant quercetin on the photostability of the most widely used combination of UVA (320–400 nm) and UVB (290–320 nm) filters, respectively butyl methoxydibenzoylmethane (BMDBM) and octyl methoxycinnamate (OMC). In order to reproduce the conditions prevalent in commercial sunscreen products, the stabilizing efficacy of quercetin was evaluated in model creams containing BMDBM (3%, wt/wt) together with OMC (4%, wt/wt) and exposed to a solar simulator at an irradiance corresponding to natural sunlight. Quercetin was found to enhance the photostability of the two UV filters in a concentration-dependent way. Addition of quercetin to the sunscreen formulation significantly reduced the photodegradation of BMDBM and OMC from 40.3 ± 2.4 to 27.7 ± 2.6% and from 51.3 ± 2.1 to 42.2 ± 2.0%, respectively. Moreover, comparative photodegradation studies demonstrated that quercetin was much more effective and at a lower concentration than commonly used stabilizer (octocrylene) and antioxidants (vitamin E, butylated hydroxyanisole). In vitro determination of the UVB and UVA protection parameters showed that the quercetin-based formulation fulfilled the official requirements on sunscreen products. Because of its photostabilizing and multiple antioxidant properties, quercetin represents a useful additive for the formulation of effective broad-spectrum sunscreens containing BMDBM and OMC.  相似文献   

2.
Sunscreens are used to protect the human skin against harmful UV radiation. Today there is a trend toward higher sun protection factors (SPF) and better UVA protection. Methods for the assessment of SPF and UVA protection involve irradiation of the product, and the photostability properties of the sunscreen have an influence on its performance. Sunscreens often contain more than one UV filter. Thus it is important to understand the photostability properties of the complete system. The filter combinations used may exhibit destabilizing, stabilizing or inert interactions. For that reason, besides assessment of the properties of the single filters, photostabilities of binary filter combinations are investigated. Destabilization occurs when two UV absorbers undergo a chemical reaction after absorption of UV radiation. Stabilization may be achieved when the optical density of the system is very high, giving rise to a self‐protection effect of the sunscreen film. Photounstable UV absorbers may be additionally stabilized by employing triplet quenchers. Being aware of these mechanisms and applying them for specific UV filter combinations can help in designing efficient sunscreens.  相似文献   

3.
Infrared A radiation (IRA) from solar sunlight contributes to photoaging of human skin, e.g. by upregulating MMP‐1 expression in dermal fibroblasts, indicating the need for photoprotection of human skin against IRA. Up to now, however, there has been no controlled study to show that effective protection of human skin against IRA radiation is possible. Here, we have conducted a randomized, controlled, double‐blinded prospective study in 30 healthy volunteers to assess the capacity of an SPF 30 sunscreen versus the same sunscreen supplemented with an antioxidant cocktail containing grape seed extract, vitamin E, ubiquinone and vitamin C to protect human skin against IRA radiation‐induced MMP‐1 upregulation. As expected, exposure to IRA radiation significantly upregulated MMP‐1 expression, as compared to unirradiated skin, and this response was significantly reduced, if the SPF30 sunscreen plus the antioxidant cocktail had been applied prior to IRA radiation. In contrast, treatment of human skin with the SPF30 sunscreen alone did not provide significant protection. These results indicate that topically applied antioxidants effectively protect human skin against IRA radiation and that regular sunscreens need to be supplemented with specific antioxidants in order to achieve IRA photoprotection.  相似文献   

4.
The coencapsulation of two UV filters, butyl‐methoxydibenzoylmethane (BMDBM) and octocrylene (OCT), into lipid nanocarriers was explored to develop stable cosmetic formulations with broad‐spectrum photoprotection and slow release properties. Different types of nanocarriers in various concentrations of the two UV filters were tested to find the combination with the best absorption and release properties. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been the two types of lipid nanocarriers used. The NLCs were based on either medium chain triglycerides (MCT) or squalene (Sq). The following physicochemical properties of the nanocarriers have been evaluated: particle size, morphology, zeta potential (ZP), entrapment efficiency, loading capacity, and thermal behavior. The nanocarriers have been formulated into creams containing low amounts of UV filters (2.5% BMDBM and 1% OCT). The best photoprotection results were obtained with the cream based on NLCs prepared with MCT, having a sun protection factor (SPF) of 17.2 and an erythemal UVA protection factor (EUVA–PF) of 50.8. The photostability of the encapsulated BMDBM filter was confirmed by subjecting the nanocarriers‐based creams to in vitro irradiation. The prolonged UV‐protection efficacy was coupled with a slow in vitro release of the synthetic UV filters, which followed the Higuchi release model.  相似文献   

5.
Sunscreens were originally designed to include mainly UVB-filters. Because of the deeper penetration of UVA light, causing photoaging and DNA damage, there has been a shift towards broad spectrum sunscreens. These broad spectrum sunscreens now include both UVA- and UVB-filters and other ingredients which possess antioxidant activity. Although sunscreens are regulated in most countries, photostability testing is not mandatory. Because of the ability of sunscreen ingredients to absorb UV-light and the complexity of most of these formulations, which may include more than one UV-filter, antioxidants and other formulation excipients, it is important that their photostability in combination is determined.  相似文献   

6.
The phosphorescence decay of a UV‐A absorber, 4‐tert‐butyl‐4′‐methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV‐B absorbers, 2‐ethylhexyl 4‐methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet–triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy‐donor phosphorescence decay measurements can be applied to the study of the triplet–triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet–triplet annihilation was observed in the BMDBM–OMC and BMDBM–OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions.  相似文献   

7.
Acute exposure to UV radiation causes immunosuppression of contact hypersensitivity (CH) responses. Past studies conducted with unfiltered sunlamps emitting nonsolar spectrum UV power (wavelengths below 295 nm) or using excessive UV doses have suggested sunscreens may not prevent UV-induced immunosuppression in mice. This study was thus designed to evaluate critically the effects of different UV energy spectra on the immune protection capacity of sunscreen lotions. Minimum immune suppression doses (MISD), i.e. the lowest UV dose to cause~50% suppression of the CH response to dinitrofluorobenzene in C3H mice, were established for three artificial UV sources. The MISD for each UV source was 0.25 kJ/m2 for unfiltered FS20 sunlamps (FS), 0.90 kJ/m2 for Kodacel-filtered FS20 sunlamps (KFS), which do not emit UV power at wavelengths <290 nm, and 1.35 kJ/m2 for a 1000 W filtered xenon arc lamp solar simulator. Using MISD as baseline, sunscreens with labeled sun protection factors (SPF) of 4, 8, 15 and 30 were tested with each UV source to establish their relative immune protection factors. The immune protection factor of each sunscreen exceeded its labeled SPF in tests conducted with the solar simulator, which has a UV power spectrum (295–400 nm) similar to that of sunlight. Conversely, sunscreen immune protection factors were significantly less than the labeled SPF in tests conducted with FS and KFS. Comparison of the immunosuppression effectiveness spectra showed that relatively small amounts of nonsolar spectrum UV energy, i.e. UVC (200–290 nm) and/or shorter wavelength UVB (between 290 and 295 nm), produced by FS and KFS contributes significantly to the induction of immunosuppression. For example, 36.3% and 3.5% of the total immunosuppressive UV energy from FS and KFS, respectively, lies below 295 nm. Sunscreen absorption spectra showed that transmission of immunosuppressive UV energy below 295 nm for FS was at least eight-fold higher than that for KFS. Compared to the solar simulator UV spectrum the transmission of nonsolar immunosuppressive UV energy through sunscreens was >15-fold higher for FS and ≥1.5-fold higher for KFS. These data demonstrate that relevant evaluations of sunscreen immune protection can only be obtained when tests are conducted with UV sources that produce UV power spectra similar to that of sunlight and UV doses are employed that are based on established MISD.  相似文献   

8.

Butyl methoxy dibenzoylmethane (BMDM) and octocrylene (OC), common UV-filters in sunscreen products are often used in combination. Together they provide broad spectrum photoprotection from exposure to both UVA- and UVB-light. These UV-filters may, however, undergo photodegradation and generate photodegradants, resulting in a potential loss of photoprotection. It is thus a concern that the photostability testing as described by the ICH Guideline Q1B is not a requirement for sunscreen products in Australia, Europe or the USA. UV-filter photodegradants have in addition been shown to be toxic, highlighting the importance of their separation from the parent UV-filters. An HPLC method was developed and validated to quantitatively determine a combination of these UV-filters in the presence of their photodegradants. Reverse-phase chromatography was employed, using a C18 column and an isocratic mobile phase consisting of methanol/water/acetic acid (89/10/1 v/v). Validation according to the ICH guidelines for linearity, accuracy, precision, sensitivity, specificity and robustness was confirmed. The developed and validated method was then successfully applied to the determination of BMDM and OC in an aqueous cream base, typically used in sunscreens, after photostability testing, according to the ICH Guideline Q1B. In addition, the diketo-enol ratio of BMDM in methanol-d 4 was determined by NMR and the two major photodegradants were identified by FTMS and LC–MS.

  相似文献   

9.
The in vivo reflectance spectra of Caucasian skin, coated with preparations containing sunscreen vehicle, vehicle with olive oil and vehicle with the UVB and UVA absorbers 2-ethylhexyl-4-methoxycinnamate and 4-t-butyl-4'-methoxydibenzoylmethane were determined. All preparations reduced the reflectance of skin throughout the UVA spectral range (320 to 400 nm), with the sunscreen preparations containing the UVB and UVB plus UVA absorbers reducing the reflectance more than the sunscreen vehicle alone. This phenomenon, which facilitates the penetration of UV radiation to the lower epidermis and dermal layers of skin and therefore lessens sunscreen efficacy, is attributed to optical coupling mediated by refractive index matching of the sunscreen to the upper epidermis. The greater reduction in skin diffuse reflectance caused by sunscreens containing methoxycinnamate is associated with this compound's high refractive index. Also, by determining the excitation spectra of the autofluorescence originating from the dermal layer of skin, the transmission spectra of the various components of sunscreen on skin were established, and these were in good general agreement with previously published spectra.  相似文献   

10.
The photostability of drugs administered topically on unprotected skin is a complex phenomenon that could be connected with the loss of activity or, rather rarely, the occurrence of toxic degradation products. In this study, an in‐depth investigation of the photostability of terbinafine, in both solutions and formulations, was conducted, taking into account the presence of UV absorbers such as TiO2, ZnO, avobenzone, 3‐(4‐methylbenzylidene)camphor, octocrylene, benzophenone‐1 and benzophenone‐2. The clear photocatalytic degradation of terbinafine in ethanol solution was observed in the presence of TiO2 and/or ZnO. In other cases, terbinafine was stable, with the exception of, in the presence of octocrylene. The presumed degradation products of terbinafine were identified for the first time using LC/MS/MS, and transformation pathways were proposed. In the case of a cream formulation, the percentage of initial terbinafine content was almost unchanged in the presence of the UV absorbers benzophenone‐1, benzophenone‐2 and 3‐(4‐methylbenzylidene)camphor. In vitro cytotoxicity risk assessment of terbinafine based on photostability under UVA irradiation was evaluated using the human skin fibroblast BJ (ATCC® CRL‐2522?), and this showed no statistically significant difference in cell viability for all samples analyzed.  相似文献   

11.
Currently, plants have gained widespread interest as a source of natural sunscreen. Specifically, plants from high altitude ecosystems are exposed to high UVR levels; therefore, they must produce an adaptive chemical response. The aim of this study was to evaluate the photo‐protection and antioxidant capacity in vitro of nine plants from high altitude ecosystems in Antioquia, Colombia (Sphagnum meridense, Calamagrostis effusa, Lycopodiella alopecuroides, Morella parvifolia, Baccharis antioquensis, Pentacalia pulchella, Castilleja fissifolia, Hesperomeles ferruginea and Hypericum juniperinum). B. antioquensis and P. pulchella extracts showed the best results over a broad spectrum UVA‐UVB with antioxidant capacity in vitro. However, B. antioquensis extracts presented the highest absorption coefficient in UVB‐UVA range among plants under study. Furthermore, the gel formulation containing the crude extract of B. antioquensis showed significant values of UVAPF, UVA/UVB ratio, critical wavelength (λc) and SPF (3, 0.78 380 nm and 4.73 ± 0.26; respectively), indicating interesting photostability and antiradical capacities. All of these properties could be improve in order to satisfy the requirements for broad‐spectrum UVB/UVA protection. Finally, P. pulchella and B. antioquensis extracts could be a potential source of a new natural sunscreen compounds with photostable and antiradical properties.  相似文献   

12.
It is now well documented that chronic UVA exposure induces damage to human skin. Therefore, modern sunscreens should not only provide protection from both UVB and UVA radiation but also maintain this protection during the entire period of exposure to the sun. UVA filters, however, are rare and not sufficiently photostable. We investigated the effect of the introduction of a new UV filter, bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), in oil in water sunscreen formulations on the photostability of butyl methoxydibenzoylmethane (Avobenzone [AVB]) after irradiation with an optically filtered Xenon arc source (UV irradiance adjusted at 1 mean effective dose [MED]/min). With spectrophotometrical methods to assess the sun protection factor (SPF) and UVA ratio and chromatographical methods to determine the amount of UV filters recovered after irradiation we showed that Tinosorb S prevented the photodegradation of AVB in a concentration-dependent way, leading to a sustained SPF and UVA ratio even after irradiation with doses of up to 30 MED. Since AVB was shown to destabilize ethylhexyl methoxycinnamate (EHM) we tested the effect of Tinosorb S in sunscreens containing this UV filter combination. Here too Tinosorb S showed photoprotective properties toward both UV filters. Thus, Tinosorb S can be used successfully to improve the photostability and efficiency of sunscreens containing AVB and EHM.  相似文献   

13.
Butyl methoxy dibenzoylmethane (BMDM) and octocrylene (OC), common UV-filters in sunscreen products are often used in combination. Together they provide broad spectrum photoprotection from exposure to both UVA- and UVB-light. These UV-filters may, however, undergo photodegradation and generate photodegradants, resulting in a potential loss of photoprotection. It is thus a concern that the photostability testing as described by the ICH Guideline Q1B is not a requirement for sunscreen products in Australia, Europe or the USA. UV-filter photodegradants have in addition been shown to be toxic, highlighting the importance of their separation from the parent UV-filters. An HPLC method was developed and validated to quantitatively determine a combination of these UV-filters in the presence of their photodegradants. Reverse-phase chromatography was employed, using a C18 column and an isocratic mobile phase consisting of methanol/water/acetic acid (89/10/1 v/v). Validation according to the ICH guidelines for linearity, accuracy, precision, sensitivity, specificity and robustness was confirmed. The developed and validated method was then successfully applied to the determination of BMDM and OC in an aqueous cream base, typically used in sunscreens, after photostability testing, according to the ICH Guideline Q1B. In addition, the diketo-enol ratio of BMDM in methanol-d 4 was determined by NMR and the two major photodegradants were identified by FTMS and LC–MS.  相似文献   

14.
《印度化学会志》2023,100(2):100858
Excessive exposure of UV radiation from the sunlight to human skin is dangerous and causes various skin disorders including skin cancer. Dermatologists worldwide recommend use of skin creams/lotions containing UV-filters/sunscreens for protection from such harmful effects. There is continuous evolution and development of new organic, inorganic and hybrid sunscreens which are being used in such skin care preparations. In the recent past it has been seen that some of these materials are not stable to UV light and the sun protection offered by them decreases rapidly with time. Therefore, most of the formulators now prefer photostable sunscreens or the formulations are designed in such a way that they provide inherent photostability.In this review, we have covered the chemistry of synthesis of different organic sunscreens, issues related to photostability of some of them, and different approaches used to enhance their photostability.  相似文献   

15.
Previously we reported that the broad-spectrum sunscreen microfine titanium dioxide (MTD) could completely protect C3H/HeJ mice from UV radiation-induced immunosuppression to a contact sensitizer. In contrast, 2-ethylhexyl p-methoxycinnamate (2-EHMC), a UVB-absorbing sunscreen, only partially protected the skin immune system. In this study we investigated further this differential protection of the skin immune system by comparing the ability of 2-EHMC and MTD to protect these mice from the promotion phase of tumorigenesis. The mice were initiated using a single subcarcinogenic dose of 7,12-dimethylbenz(a)anthracene (DMBA) followed by promotion with chronic low-dose solar-simulated UV radiation for 32 weeks. We used doses of UV insufficient to cause edema in order to simulate daily human exposure to solar UV radiation. Mice were observed for the appearance of squamous cell carcinomas for 48 weeks. The DMBA-initiation alone and DMBA-initiated, sunscreen-treated groups did not develop tumors. Ultraviolet alone induced the appearance of tumors in 46% of mice at week 48 and therefore some tumors were initiated by UV. Initiation with DMBA prior to UV irradiation enhanced tumorigenesis such that 87% of mice at week 48 had tumors. Both 2-EHMC and MTD completely protected these mice from UV-induced promotion as well as from complete carcinogenesis despite the different UV-absorption spectra of the sunscreens and their differential abilities to protect from UV-induced immunosuppression. Furthermore, we have shown that, if UV exposure is not increased to compensate for tolerance to edema, protection from tumorigenesis is afforded by sunscreens.  相似文献   

16.
Due to ability of stable nitroxides to interact with free radicals, they are used as antioxidants for therapeutic and research goals in biology and medicine. A modern trend in medical chemistry is the design of multifunctional molecules such as UV absorbers covalently bound to nitroxides, which provides both UV protection and antioxidant properties combined in the same molecule. In the present work, we report the synthesis of conjugates of a natural UV filter kynurenine (KN) with nitroxides (KN‐RNO conjugates) and the study of their photochemical properties in aqueous and methanol solutions. Due to the spin‐exchange interaction between KN and nitroxide moieties, the triplet lifetimes in conjugates are much shorter than in KN molecule, but the triplet quantum yields are significantly higher. The reaction of intramolecular electron transfer between photoexcited KN and nitroxide moieties is the main factor determining the quantum yield of KN‐RNO conjugates photodecomposition. Consequently, KN‐RNO conjugates in aqueous solution are photochemically less stable than the parent KN molecule. Nevertheless, the photostability of KN‐RNO conjugates is much higher than that of cinnamates which are widely used as UV absorbers in modern sunscreen formulations. Thus, the combination of the endogenous chromophore KN with nitroxides is very promising for medical applications.  相似文献   

17.
Numerous epidemiological investigations show that sunlight is carcinogenic to humans and that the use of sunscreen may be effective in decreasing the risk of skin cancer. The biological activity of a sunscreen is evaluated by its ability to protect human skin from erythema as represented by a Sun Protection Factor (SPF). We propose that the sunscreen's protective effect against sunlight-induced genotoxicity, including mutation, should also be taken into account. In this study we examined the protective ability of sunscreens against natural sunlight and UV-induced genotoxicity in Drosophila somatic cells. We prepared three kinds of sunscreen samples, each with an SPF value of 20, 40 or 60 and compared their protective activities with commercial sunscreens. When a sunscreen of SPF 20, 40 or 60 was pasted on the plastic cover of a petri dish in which Drosophila larvae were exposed to the sun or UV lamps, genotoxicity decreased as the SPF of the sunscreen increased, relative to levels of genotoxicity observed in samples without sunscreen. However, the protective abilities of sunscreens were unexpectedly not so different from each other. To reveal the relationship between the protective activity of sunscreen and the wavelength of light with which larvae were irradiated through the sunscreen, we measured the transmittance of light through the petri dish cover on which the sunscreen was pasted. Effective protection was demonstrated by removing components of light whose wavelengths were below 315 nm. We suggest, that the measurement of anti-genotoxic activity and the determination of the wavelengths of light transmitted through the sunscreen should be an alternative method for evaluating the effectiveness of a sunscreen.  相似文献   

18.
A major concern raised about photostability studies of sunscreen products is that the photodegradation of sunscreens does not readily translate into changes in product performance. This study examines the correlation between photochemical degradation of sunscreen agents and changes in protection provided by sunscreen films. Films of a commercial sunscreen product containing avobenzone, oxybenzone and octinoxate were irradiated using a fluorescent UV-A phototherapy lamp with additional UV-B blocking filter. Periodically, during irradiation the transmittances of the films were measured and samples collected for chemical analysis of the sunscreen agents using high-performance liquid chromatography techniques. The results show that UV-induced changes in UV transmittance of sunscreen films correlate with changes in concentration of sunscreen agents. In a parallel experiment, we also irradiated a thin film of the same product in the cavity of an electron spin resonance (ESR) spectrometer. We report the concomitant photolysis of avobenzone and octinoxate that predominates over expected E/Z photoisomerization and that irradiation of a film of this product produced free radicals detected by ESR spectroscopy that persisted even after exposure had ended.  相似文献   

19.
Sunscreen isn't enough.   总被引:2,自引:0,他引:2  
Topical sunscreens act by absorbing or scattering UV radiation and are widely available for general public use as a consumer product. Surveys carried out in the UK find that sunscreen use is regarded as the most important, and by implication the most effective, sun protection measure. But is perception borne out by reality? Sunscreens applied at the thickness tested by manufacturers need only possess an SPF of 15 to prevent sunburn even for all day exposure in tropical sunshine. Yet behavioural studies show that high SPF (>15) sunscreens do not always prevent sunburn. That the protection achieved is often less than that expected depends upon a number of factors: application thickness and technique; type of sunscreen applied; resistance to water immersion and sand abrasion; and when, where and how often sunscreen is re-applied. These factors provide ample evidence that the numerical measure of protection indicated on the product pack is generally higher than achieved in practice. This mismatch between expectation and realisation may be one contributing factor why sunscreens have been reported to be a risk factor in melanoma.  相似文献   

20.
Stratospheric ozone depletion has caused an increase in the amount of ultraviolet‐B (UV‐B) radiation reaching the earth's surface. Numerous investigations have demonstrated that the effect of UV‐B enhancements on plants includes reduction in grain yield, alteration in species competition, susceptibility to disease and changes in plant structure and pigmentation. Many experiments examining UV‐B radiation effects on plants have been conducted in growth chambers or greenhouses. It has been questioned whether the effect of UV‐B radiation on plants can be extrapolated to field responses from indoor studies because of the unnaturally high ratios of UV‐B/ ultraviolet‐A radiation (320–400 nm) and UV‐B/photosynthetically active radiation (PAR) in many indoor studies. Field studies on UV‐B radiation effect on plants have been recommended to use the UV and PAR irradiance provided by natural light. This study reports the growth and yield responses of a maize crop exposed to enhanced UV‐B radiation and the UV‐B effects on aize seed qualities under field conditions. Enhanced UV‐B radiation caused a significant reduction in the dry matter accumulation and the maize yield in turn was affected. With increased UV‐B radiation the flavonoid accumulation in maize leaves increased and the contents of chlorophyll a, b and (a+b) of maize leaves were reduced. The levels of protein, sugar and starch of maize seed decreased with enhanced UV‐B radiation, whereas the level of lysine increased with enhanced UV‐B radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号