首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, the modified magnetic chitosan resin containing diethylenetriamine functional groups (DETA-MCS) was used for the adsorption of uranium ions from aqueous solutions. The influence of experimental conditions such as contact time, pH value and initial uranium(VI) concentration was studied. The Langmuir, Freundlich, Sips and Dubinin–Radushkevich equations were used to check the fitting of adsorption data to the equilibrium isotherm. The best fit for U(VI) was obtained with the Sips model. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. The present results suggest that DETA-MCS is an adsorbent for the efficient removal of uranium(VI) from aqueous solution.  相似文献   

2.
Neem sawdust was used to develop an effective carbon adsorbent. This adsorbent was used for the removal of Congo Red (CR) from aqueous solution. The data suggest that the pH of aqueous solutions influences CR removal due to the decrease of removal efficiency with increasing pH. An optimal pH < 3 for the adsorption of CR onto neem sawdust carbon (NSDC) was determined. The experimental data were analysed by the Langmuir, Freundlich, Redlich-Peterson, Toth, Temkin, Sips and Dubinin-Radushkevich models of adsorption. Three simplified kinetic models based on pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were used to describe the adsorption process. It was shown that the adsorption of CR could be described by the pseudo-second-order equation, suggesting that the adsorption occurs as a chemisorption process. The results indicate that the NSDC can be used as a low cost adsorbent alternative to commercial activated carbon for the removal of dyes from wastewaters.  相似文献   

3.
The removal of Cr(VI) ions from aqueous solution by human hair waste is investigated by using UV–Vis spectrophotometer technique. The morphological analysis of the human hair was also investigated by the scanning electron microscopy, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy. The influence of various physicochemical effective parameters such as pH, ionic strength, adsorbent amount, contact time, initial concentration of metal ion on removal of Cr(VI) ions by human hair process was also studied. The optimum conditions for this adsorption process were obtained at pH = 2 and contact time of 150 min while the highest Cr(VI) uptake is recorded for 0.5 g of the adsorbent per 100 ml of solution. Three isotherms models including Langmuir, Freundlich and Temkin were applied to describe the equilibrium data. It was found that the experimental data were well described by Freundlich isothermal model. The maximum adsorption capacity was found to be 11.64 mg g?1.The thermodynamic study data showed that the adsorption process of Cr(VI) on human hair is an endothermic, spontaneous and physisorption reaction. The kinetics of the adsorption process was studied using three kinetics models including Lagergren-first-order, pseudo-second-order and Elovich model. The obtained data are indicated that the adsorption processes of Cr(VI) over human hair could be described by the pseudo-second-order kinetic model.  相似文献   

4.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

5.
The metal anions of vanadium (V) and chromium (VI) in aqueous solution can be effectively adsorbed by Zr(IV)-impregnated collagen fiber (ZrICF). The maximum adsorption capacity of V(V) takes place within the pH range of 5.0 to 8.0, while that of Cr(VI) is within the pH range of 6.0 to 9.0. When the initial concentration of metal ions was 2.00 mmol L−1 and the temperature was 303 K, the adsorption capacity of V(V) on Zr-ICF was 1.92 mmol g−1 at pH 5.0, and the adsorption capacity of Cr(VI) was 0.53 mmol g−1 at pH 7.0. As temperature increased, the adsorption capacity of V(V) increased, while that of Cr(VI) was almost unchanged. The adsorption isotherms of the anionic species of V(V) and Cr(VI) can be fit by the Langmuir equation. The adsorption rate of V(V) follows the pseudo-first-order rate model, while the adsorption rate of Cr(VI) follows the pseudo-second-order rate model. Furthermore, ZrICF shows high adsorption selectivity to V(V) in the mixture solution of V(V) and Cr(VI). Practical applications of ZrICF could be expected in consideration of its performance in adsorption of V(V) and Cr(VI).  相似文献   

6.
Jute fiber obtained from the stem of a plant was used to prepare activated carbon using phosphoric acid. Feasibility of employing this jute fiber activated carbon (JFC) for the removal of Methylene blue (MB) from aqueous solution was investigated. The adsorption of MB on JFC has found to dependent on contact time, MB concentration and pH. Experimental result follows Langmuir isotherm model and the capacity was found to be 225.64 mg/g. The optimum pH for the MB removal was found to be 5-10. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation, intraparticle diffusion and Elovich equation. Among the kinetic models studied, the intraparticle diffusion was the best applicable model to describe the adsorption of MB onto JFC.  相似文献   

7.
Activated palm kernel shell carbon (APKSC) was used to remove U(VI) from aqueous solutions in a batch system. The adsorption kinetics, isotherms, and effects of various parameters, such as temperature, contact time, solution pH, adsorbent dosage, and initial U(VI) concentration on the U(VI) adsorption process were studied. Equilibrium was reached after 120 min in the range of studied U(VI) concentrations and temperatures. U(VI) uptake was insignificantly affected by temperature, but was highly pH dependent, and the optimum pH for removal was 5.5. U(VI) removal efficiency increased with the increasing adsorbent dosage. U(VI) sorption capacity increased with increasing initial U(VI) concentration; any further increases in initial U(VI) concentration above a certain point caused insignificant changes in U(VI) sorption capacity. Isotherm data could be described by the Langmuir isotherm model with a maximum U(VI) adsorption capacity of 51.81 mg/g. Kinetic data were fitted to pseudo-first-order and pseudo-second-order equations, which suggested that the U(VI) adsorption onto APKSC was better reproduced by the pseudo-second-order model rather than pseudo-first-order model. Our results indicated that APKSC might be used as a cheap adsorbent in the treatment of uranium-containing wastewater.  相似文献   

8.
The biomass pummelo peel was chosen as a biosorbent for removal of uranium(VI) from aqueous solution. The feasibility of adsorption of U(VI) by Pummelo peel was studied with batch adsorption experiments. The effects of contact time, biosorbent dosage and pH on adsorption capacity were investigated in detail. The pummelo peel exhibited the highest U(VI) sorption capacity 270.71?mg/g at an initial pH of 5.5, concentration of 50???g/mL, temperature 303?K and contacting time 7?h. The adsorption process of U(VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it followed both the Langmuir adsorption isotherm and the Freundlich adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that the pummelo peel has potential application in the removal of the uranium(VI) from the radioactive waste water.  相似文献   

9.
Cr(VI) is a major water pollutant from industrial effluent whose concentration is to be reduced within the permissible limit. Present study reports a systematic evaluation of six different natural adsorbents for the removal of Cr(VI) from aqueous solutions in batch process. The adsorption kinetic data were best described by pseudo-second order model. The values of mass transfer coefficient for Cr(VI) adsorption indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast. The effective diffusivity of Cr(VI) removal for all the adsorbents were of the order of 10(-10) m(2)/s which suggested chemisorption of the process. The adsorption process was jointly controlled by film diffusion and intraparticle diffusion. Maximum monolayer adsorption capacities onto the natural adsorbents used were comparable to the other natural adsorbents used by other researchers. The thermodynamic studies and sorption energy calculation using Dubinin-Radushkevich isotherm model indicated that the adsorption processes were endothermic and chemical in nature. FT-IR studies were carried out to understand the type of functional groups responsible for Cr(VI) binding process. Desorption study was carried out with different concentration of NaOH solutions. Application study was carried out using electroplating industrial wastewater.  相似文献   

10.
Both the accumulation of coal gangue and potentially toxic elements in aqueous solution have caused biological damage to the surrounding ecosystem of the Huainan coal mining field. In this study, coal gangue was used to synthesize calcium silicate hydrate (C-S-H) to remove Cr(VI) and Cu(II)from aqueous solutions and aqueous solution. The optimum parameters for C-S-H synthesis were 700 °C for 1 h and a Ca/Si molar ratio of 1.0. Quantitative sorption analysis was done at variable temperature, C-S-H dosages, solution pH, initial concentrations of metals, and reaction time. The solution pH was precisely controlled by a pH meter. The adsorption temperature was controlled by a thermostatic gas bath oscillator. The error of solution temperature was controlled at ± 0.3, compared with the adsorption temperature. For Cr(VI) and Cu(II), the optimum initial concentration, temperature, and reaction time were 200 mg/L, 40 °C and 90 min, pH 2 and 0.1 g C-S-H for Cr(VI), pH 6 and 0.07 g C-S-H for Cu(II), respectively. The maximum adsorption capacities of Cr(VI) and Cu(II) were 68.03 and 70.42 mg·g−1, respectively. Furthermore, the concentrations of Cu(II) and Cr(VI) in aqueous solution could meet the surface water quality standards in China. The adsorption mechanism of Cu(II) and Cr(VI) onto C-S-H were reduction, electrostatic interaction, chelation interaction, and surface complexation. It was found that C-S-H is an environmentally friendly adsorbent for effective removal of metals from aqueous solution through different mechanisms.  相似文献   

11.
Adsorption of chromium from aqueous solution using chitosan beads   总被引:1,自引:0,他引:1  
A basic investigation on the removal of Cr(III) and Cr(VI) ions from aqueous solution by chitosan beads was conducted in a batch adsorption system. The chitosan beads were prepared by casting an acidic chitosan solution into an alkaline solution. The influence of different experimental parameters; pH, agitation period and different concentration of Cr(III) and Cr(VI) ions was evaluated. A pH 5.0 was found to be an optimum pH for Cr(III) adsorption, and meanwhile pH 3.0 was the optimum pH for the adsorption of Cr(VI) onto chitosan beads. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Cr(III) and Cr(VI) onto chitosan beads. Results indicated that Cr(III) and Cr(VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacities of Cr(III) and Cr(VI) ions onto chitosan beads were 30.03 and 76.92 mg g−1, respectively. Results showed that chitosan beads are favourable adsorbents. The Cr(III) and Cr(VI) ions can be removed from the chitosan beads by treatment with an aqueous EDTA solution.  相似文献   

12.
13.
Speciation and separation of chromium (VI) and chromium (III) from aqueous solutions were investigated using amino-propyl functionalised mesoporous silica (AP-MCM-41) as an adsorbent. The as-synthesised adsorbent was produced following a simple synthesis method at room temperature prior to template removal using microwave digestion. The maximum adsorption capacity at 111.1mg/g was calculated according to the Langmuir isotherm model, suggesting a 1:1 monolayer adsorption mechanism. Moreover, AP is a simple chelate, yet it can extract Cr (VI) exclusively from solutions containing other mixed metal ions simply by tuning the solution pH. Recovery of Cr (VI) from loaded sorbents is equally easy to perform with 100% extraction efficiencies allowing reuse of the sorbent and recovery of Cr (VI) from aqueous solutions containing a complex mixture of ions. The material would find use in environmental remediation applications, as a selective adsorbent of Cr (VI) or even as a solid-phase extraction stationary phase to remove and pre-concentrate Cr (VI) from aqueous solutions; this study demonstrates enrichment factors of 100 although higher levels are also possible.  相似文献   

14.
Adsorption of U(VI) from aqueous solution by cross-linked rice straw(CRS) was studied with batch experiments. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR). The effect of contact time, initial pH, temperature, adsorbent amount and initial U(VI) concentration was investigated. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption isotherms and two kinetic models of pseudo-first-order and pseudo-second-order were used to describe the adsorption process. The result showed that the adsorption process was highly pH dependent and the favorable initial pH was 5.0. The adsorption process was rapid within first 60 min and equilibrium reached at 100 min. The adsorption process could be well defined by the Langmuir isotherm and pseudo-second-order equation, which indicated that the chemical adsorption was the rate-limiting step. The thermodynamic parameters (?H°, ?S°, ?G°) of the adsorption system were also calculated. The negative value of ?H° and ?G° indicated that the reaction was endothermic and spontaneous in nature. All the above suggested that CRS has considerable potential for the removal of U(VI) from aqueous solution.  相似文献   

15.
A novel graphene oxide/bentonite composite (GO/bentonite) was synthesized and then characterized through powder X-ray diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and energy dispersive spectroscopy. Adsorption achieved equilibrium within 10 min. Moreover, U(VI) adsorption on GO/bentonite was highly dependent on solution pH and independent of ionic strength. These characteristics suggested that inner-sphere surface complexes of U(VI) formed on GO/bentonite. The adsorption of U(VI) from aqueous solution on GO/bentonite was fitted to the pseudo-second-order and Freundlich isotherm models. The maximum sorption capacity of GO/bentonite was 234.19 mg g?1 under neutral pH at 303 K. GO/bentonite is a potentially powerful adsorbent for the efficient removal of U(VI) from aqueous solutions.  相似文献   

16.
Removal of Cr(VI) from wastewater using rice bran   总被引:4,自引:0,他引:4  
The novel biosorbent rice bran has been successfully utilized for the removal of Cr(VI) from wastewater. The maximum removal of Cr(VI) was found to be 99.4% at pH 2.0, initial Cr(VI) concentration of 200 mg l(-1), and temperature 20 degrees C. The effect of different parameters such as contact time, adsorbate concentration, pH of the medium, and temperature was investigated. The adsorption kinetics was tested for first-order reversible, pseudo-first-order, and pseudo-second-order; reaction and the rate constants of kinetic models were calculated. Mass transfer of Cr(VI) from the bulk to the solid phase (rice bran) was studied at different temperatures. Different thermodynamic parameters, viz., changes in standard free energy, enthalpy, and entropy, have also been evaluated and it has been found that the reaction was spontaneous and endothermic in nature. The Langmuir and Freundlich equations for describing adsorption equilibrium were applied to data. The constants and correlation coefficients of these isotherm models were calculated and compared. Desorption studies was also carried out and found that complete desorption of Cr(VI) took place at pH of 9.5. The data were also subjected to multiple regression analysis and a model was developed to predict the removal of Cr(VI) from wastewater.  相似文献   

17.
Adsorption of Cr(VI) on Fe2O3 from model solutions with various Cr(VI) concentrations was studied. The adsorption capacity was determined, the constants of chromium(VI) adsorption on iron(III) oxide for the pseudo-second-order model were calculated, and the diffusion coefficients for the process were evaluated.  相似文献   

18.
Adsorption of Cr(VI) using activated neem leaves: kinetic studies   总被引:1,自引:0,他引:1  
In the present study, adsorbent is prepared from neem leaves and used for Cr(VI) removal from aqueous solutions. Neem leaves are activated by giving heat treatment and with the use of concentrated hydrochloric acid (36.5 wt%). The activated neem leaves are further treated with 100 mmol of copper solution. Batch adsorption studies demonstrate that the adsorbent prepared from neem leaves has a significant capacity for adsorption of Cr(VI) from aqueous solution. The parameters investigated in this study include pH, contact time, initial Cr(VI) concentration and adsorbent dosage. The adsorption of Cr(VI) is found to be maximum (99%) at low values of pH in the range of 1-3. A small amount of the neem leaves adsorbent (10 g/l) could remove as much as 99% of Cr(VI) from a solution of initial concentration 50 mg/l. The adsorption process of Cr(VI) is tested with Langmuir isotherm model. Application of the Langmuir isotherm to the system yielded maximum adsorption capacity of 62.97 mg/g. The dimensionless equilibrium parameter, R L, signifies a favorable adsorption of Cr(VI) on neem leaves adsorbent and is found to be between 0.0155 and 0.888 (0<R L<1). The adsorption process follows second order kinetics and the corresponding rate constant is found to be 0.00137 g/(mg) (min).  相似文献   

19.
Zirconyl-molybdopyrophosphate-tributyl phosphate (ZMPP-TBP) was a novel organic-inorganic composite adsorbent prepared by co-precipitation method and used in the adsorption of uranium from aqueous solution in batch adsorption experiments. The as-obtained product was characterized using SEM, energy dispersive X-ray spectroscopy (EDX), XRD and BET-N2 adsorption measurements. The study had been conducted to investigate the effects of solution pH, temperature, contact time, initial concentration and coexisting ions. A maximum removal of 99.31% was observed for an initial concentration 5 mg/L, at pH 6.0 and an adsorbent dose of 1.0 g/L. The isothermal data were fitted with both Langmuir and Freundlich equations, but the data fitted the former better than the latter. According to the evaluation using the Langmuir equation, the maximum adsorption capacity of uranium (VI) was 196.08 mg/g at 293 K and pH 6.0. The pseudo-first-order kinetic model and pseudo-second-order kinetic model were used to describe the kinetic data, and the pseudo-second-order kinetic model was better. The thermodynamic parameter ΔG was calculated, the negative ΔG values of uranium (VI) at different temperature showed that the adsorption process was spontaneous. The good reusability of ZMPP-TBP also indicated that the ZMPP-TBP was a very promising adsorbent for uranium adsorption from aqueous solution.  相似文献   

20.
水溶液中六价铬在碳纳米管上的吸附   总被引:6,自引:0,他引:6  
裘凯栋  黎维彬 《物理化学学报》2006,22(12):1542-1546
针对用碳纳米管对水溶液中六价铬的吸附净化进行了研究, 考察了溶液浓度、溶液pH值、共存的三价铬离子等因素对吸附行为的影响. 实验结果表明, 碳纳米管在室温下对于六价铬的吸附量随着平衡浓度的增大而升高, 在铬浓度为493.557 mg•L−1时碳纳米管吸附量达到最大值为532.215 mg•g−1; 六价铬的浓度在300~700 mg•L−1的范围内, 碳纳米管对铬的吸附量变化不大;大于700 mg•L−1时, 随着铬的平衡浓度的升高碳纳米管对铬的吸附量降低, 铬浓度为961.074 mg•L−1时, 碳纳米管吸附量降至194.631 mg•g−1. 在pH值为2~7的范围内, 碳纳米管对六价铬的吸附量随着溶液pH值的减小而增大; 而在碱性条件下, pH值对碳纳米管吸附六价铬的影响不大. 溶液中存在三价铬时, 碳纳米管对六价铬的吸附量明显降低, 表明三价铬与六价铬有竞争吸附. 此外, 活性炭的对比吸附实验表明, 在低浓度时, 譬如在六价铬浓度为190 mg•L−1吸附时, 碳纳米管对铬的吸附量约为活性炭的6倍;而在高浓度下, 譬如六价铬浓度为493 mg•L−1时, 碳纳米管对铬的吸附量约为活性炭的2倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号