首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Ionic liquids are a type of salts that are liquid at low temperature (<100℃). Because of their some special properties, they have been widely used as new “green solvents” for many chemical reactions and liquid-liquid extraction in the past several years. In this paper, a new method for the separation of nucleotides is developed and the essential feature of the method is that 1-alkyl-3-methylimidazolium salts are used as mobile phase additives, resulting in a baseline separation of nucleotides without need of gradient elution and need of organic solvent addition as currently used in RP-HPLC. This study shows the potential application of ionic liquids as mobile phase additives in reversed-phase liquid chromatograohy.  相似文献   

2.
The gelation of ionic liquids is attracting significant attention because of its large spectrum of applications across different disciplines. These ‘green solvents’ have been the solution to a number of common problems due to their eco‐friendly features. To expand their applications, the gelation of ionic liquids has been achieved by using amino acid‐based low‐molecular‐weight compounds. Variation of individual segments in the molecular skeleton of the gelators, which comprise the amino acid and the protecting groups at the N and C termini, led to an understanding of the structure–property correlation of the ionogelation process. An aromatic ring containing amino acid‐based molecules protected with a phenyl or cyclohexyl group at the N terminus were efficient in the gelation of ionic liquids. In the case of aliphatic amino acids, gelation was more prominent with a phenyl group as the N‐terminal protecting agent. The probable factors responsible for this supramolecular association of the gelators in ionic liquids have been studied with the help of field‐emission SEM, 1H NMR, FTIR, and luminescence studies. It is the hydrophilic–lipophilic balance that needs to be optimized for a molecule to induce gelation of the green solvents. Interestingly, to maximize the benefits from using these green solvents, these ionogels have been employed as templates for the synthesis of uniform‐sized TiO2 nanoparticles (25–30 nm). Furthermore, as a complement to their applications, ionogels serve as efficient adsorbents of both cationic and anionic dyes and were distinctly better relative to their organogel counterparts.  相似文献   

3.
This study focused on the synthesis and subsequent characterization of herbicidal ionic liquids based on betaine and carnitine, two derivatives of amino acids, which were used as cations. Four commonly used herbicides (2,4‐D, MCPA, MCPP and Dicamba) were used as anions in simple (single anion) and oligomeric (two anions) salts. The obtained salts were subjected to analyzes regarding physicochemical properties (density, viscosity, refractive index, thermal decomposition profiles and solubility) as well as evaluation of their herbicidal activity under greenhouse and field conditions, toxicity towards rats and biodegradability. The obtained results suggest that the synthesized herbicidal ionic liquids displayed low toxicity (classified as category 4 compounds) and showed similar or improved efficacy against weed compared to reference herbicides. The highest increase was observed during field trials for salts containing 2,4‐D as the anion, which also exhibited the highest biodegradability (>75 %).  相似文献   

4.
A series of pyrazolyl- and 3,5-dimethylpyrazolyl-functionalized 2-methylimidazolium-based salts have been prepared through neat reactions of 1-pyrazolylmethylene-2-methylimidazole and 1-(3,5-dimethylpyrazolylmethylene)-2-methylimidazole with alkyl or polyfluoroalkyl iodides or 1-bromohexane, followed by anion exchange with LiN(SO2CF3)2 or KPF6. Their thermal properties were determined by DSC and TGA. Most of the bis(trifluoromethanesulfonyl)amide salts are room temperature ionic liquids. The influence of anions and of the structural variation in the 2-methylimidazolium-based cations on the physicochemical properties is discussed. These salts reacted easily with palladium(II) chloride to generate mononuclear palladium ionic liquid complexes. The catalytic activity and recyclability of the palladium complexes in the corresponding ionic liquids were preliminarily examined using Heck, Suzuki and Sonogashira cross-coupling reactions in the absence of phosphine ligands.  相似文献   

5.
15N NMR spectra of twelve neat ionic liquids derived from 1,3-disubstituted imidazolium salts were measured, and effects of nitrogen atoms substitution, type of anions and influence of solvents used for dilution of neat ionic liquids were studied. Changes in charge distribution are discussed.  相似文献   

6.
《Fluid Phase Equilibria》2004,219(1):93-98
Room temperature ionic liquids are salts that are liquid at room temperature and their use as catalysts and catalytic support has been studied extensively. They are also being considered as “green solvents” for various separation processes. Recent measurements reported on the properties of pure ionic liquids and their mixtures, including gas and liquid solubility in common organic solvents will be reviewed. While some property values are in good agreement, some show large differences. These values will be compared and reasons for the discrepancies will be conjectured. Since traditional approaches to predicting the properties of fluid liquids require extensive LLE and VLE measurements, alternative predictive methods need to be explored. The predictions of the properties of mixtures of ionic liquids using COSMOtherm, an approach based on unimolecular quantum chemical calculations of the individual molecules, will be presented.  相似文献   

7.
丁利  刘大壮  高振 《化学通报》2007,70(5):351-355
近年来人们对离子液体的兴趣不断增长。室温离子液体是一类熔点在室温附近的熔融盐,以其显著的特性在电化学、有机合成、催化、分离等领域被广泛应用。离子液体与氟化学紧密相关,离子液体中含有多种氟阴离子的烷基铵盐、咪唑盐等的合成、性质以及应用已经得到研究。离子液体的阴阳离子中氟原子数量和位置的不同,使离子液体具有不同的性质,如耐水性、耐温性、粘度、密度、表面张力、液体范围、导电性等。含氟的离子液体是离子液体的主要品种,它们凭借良好的可设计性和绿色环保的特点在当今化工工程的绿色化进程中显示出巨大的潜力和广阔的应用前景。  相似文献   

8.
Ionic liquids are organic salts that are liquid at ambient temperatures, preferably at room temperature. They are nonvolatile, thermally and chemically stable, highly polar liquids that dissolve many organic, inorganic, and metallo‐organic compounds. Many combinations of organic cations with different counterions are already known, and the properties of ionic liquids may be adjusted by the proper selection of the cation and counterion. In the last decade, there has been increasing interest in using ionic liquids as solvents for chemical reactions. The interest is stimulated not only by their nonvolatility (green solvents) but also by their special properties, which often affect the course of a reaction. In recent years, ionic liquids have also attracted the attention of polymer chemists. Although the research on using ionic liquids in polymer systems is still in its infancy, several interesting possibilities have already emerged. Ionic liquids are used as solvents for polymerization processes, and in several systems they indeed show some advantages. In radical polymerization, the kp/kt ratio (where kp is the rate constant of propagation and kt is the rate constant of termination) is higher than in organic media, and thus better control of the process can be achieved. Ionic liquids, as electrolytes, have also attracted the attention of researchers in the fields of electrochemical polymerization and the synthesis of conducting polymers. Finally, the blending of ionic liquids with polymers may lead to the development of new materials (ionic liquids may act as plasticizers, electrolytes dispersed in polymer matrices, or even porogens). In this article, the new developments in these fields are briefly discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4675–4683, 2005  相似文献   

9.
1‐n‐Butyl‐2,3‐dimethylimidazolium (BMMI) ionic liquids (ILs) associated with different anions undergo H/D exchange preferentially at 2‐Me group of the imidazolium in deuterated solvents. This process is mainly related to the existence of ion pairs rather than the anion basicity. The H/D exchange occurs in solvents (CDCl3 and MeCN for instance) in which intimate contact ion pairs are present and the anion possesses a labile H in its structure, such as hydrogen carbonate and prolinate. In D2O, separated ion pairs are formed and the H/D exchange does not occur. A plausible catalytic cycle is that the IL behaves as a neutral base in the course of all H/D exchange processes. NMR experiments, density functional calculations, and molecular dynamics simulations corroborate these hypotheses.  相似文献   

10.
Xiaofeng Chen  Rui Liu  Yuan Xu  Gang Zou 《Tetrahedron》2012,68(24):4813-4819
More than green alternatives to traditional volatile molecular organic solvents, protic ionic liquids as dual solvent-catalysts have been successfully used to promote reactions of organoamines with oxadiazoles to afford sterically hindered 1,2,4-triazoles. Among the tested protic ionic liquids, pyridinium trifluoroacetate and acetate showed the highest efficiency for the reactions of arylamines and alkylamines, respectively, indicating that tunable catalysis could be readily effected with protic ionic liquid solvent-catalysts by simply tuning their cation and anion counterparts. A general and efficient approach has been developed for synthesis of multiply substituted 1,2,4-triazoles based on the tunable protic ionic liquid solvent-catalyst systems.  相似文献   

11.
Electrochemical properties of ionic liquids (pyridinium and imidazolium salts) and the effect of additives of organic solvents on the electrochemical determination of organic compounds in ionic liquids have been studied. Transformations of aromatic and aliphatic sulfur compounds in ionic liquids in the presence of aromatic substrates are discussed. A new method has been proposed for identification of organic sulfur compounds–gas chromatography on columns with ionic liquid as the active phase.  相似文献   

12.
Insights are provided into the properties of molecular gels formed by diimidazolium salts both in “normal” solvents and ionic liquids. These materials can be interesting for applications in green and sustainable chemistry in which ionic liquids play a significant role, like catalysis and energy. In particular, two positional isomers of a diimidazolium cation have been examined with a wide range of anions for their ability to form gel phases. In particular, di‐, tri‐, and tetravalent anions bearing aliphatic or aromatic spacers were paired with the divalent cations. The properties of the organo‐ and ionogels formed have been analyzed by means of several different techniques, including calorimetry, rheology, resonance light scattering, UV/Vis absorption, polarizing optical microscopy, and powder X‐ray diffraction measurements. The investigations performed enabled us to obtain a wide range of conductive materials characterized by a high thermal stability and a low corrosiveness of the gelator (organogels) or of both gelator and solvent (ionogels). The information gained should be useful in the broader quest to identify and promote their applications.  相似文献   

13.
Rate constants and derived activation parameters of organic reactions in aqueous media, in particular Diels–Alder reactions, are sensitive to the presence of cosolvents in water. To enhance the solubility window of water, we introduced ionic liquids as cosolvents in the aqueous Diels–Alder reaction between anthracene‐9‐carbinol and N‐ethylmaleimide. The reactive potentials of the organic compounds are parameterized by using semi‐empirical quantum chemical methods. The principle of Savage–Wood additivity of group interactions is used to quantify the pairwise group interactions among chemically inert ionic liquids and organic reactants, both at initial and transition states of the reaction. The present approach shows promise, as the use of simple calculations from easily available kinetic data can help researchers to understand the versatility of green ionic‐liquid alternatives to volatile organic solvents.  相似文献   

14.
The preparation and application of a new series of chiral ionic liquids are described. The salts are based on imidazolinium cations. Some of the cations also incorporated an axial chirality at the C(2) position next to the central chirality. These cations display a very high rotational barrier along the arene–imidazolinium axis. Furthermore, an analogue with a chiral anion was prepared. The salts have low melting points. Their potential as solvents and as chiral shift reagents was explored, resulting for the first time in an example of a chiral ionic liquid as a shift reagent for a neutral compound.  相似文献   

15.
Ionic liquid electrolytes for dye-sensitized solar cells   总被引:1,自引:0,他引:1  
The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.  相似文献   

16.
Quaternary ammonium compounds are produced worldwide in hundreds of millions of pound volume annually for a plethora of end‐uses from fabric‐care formulations to asphalt emulsifiers, typically from nongreen alkylating reagents. The kinetics of a reaction employing dimethyl carbonate (DMC) as a green alkylating agent was investigated using three trialkylamines (tributylamine, trihexylamine, and trioctylamine) at several temperatures. Arrhenius and Eyring analysis of the data showed that values of Ea (79 kJ/mol), ΔH? (75 kJ/mol), and ΔS? (220 J/(mol K)) were the same for all three amine reactants, consistent with a report that Ea is independent of alkyl chain length when the chain length is greater than three carbons. Although rates are significantly slower with DMC than with other alkylating reagents, the resulting methyl carbonate anion has advantages for clean anion metathesis, which is important for some applications, especially those involving ionic liquids. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 221–225, 2010  相似文献   

17.
Compartmentalized molecular level design of new energetic materials based on energetic azolate anions allows for the examination of the effects of both cation and anion on the physiochemical properties of ionic liquids. Thirty one novel salts were synthesized by pairing diverse cations (tetraphenylphosphonium, ethyltriphenylphosphonium, N‐phenyl pyridinium, 1‐butyl‐3‐methylimidazolium, tetramethyl‐, tetraethyl‐, and tetrabutylammonium) with azolate anions (5‐nitrobenzimidazolate, 5‐nitrobenzotriazolate, 3,5‐dinitro‐1,2,4‐triazolate, 2,4‐dinitroimidazolate, 4‐nitro‐1,2,3‐triazolate, 4,5‐dinitroimidazolate, 4,5‐dicyanoimidazolate, 4‐nitroimidazolate, and tetrazolate). These salts have been characterized by DSC, TGA, and single crystal X‐ray crystallography. The azolates in general are surprisingly stable in the systems explored. Ionic liquids were obtained with all combinations of the 1‐butyl‐3‐methylimidazolium cation and the heterocyclic azolate anions studied, and with several combinations of tetraethyl‐ or tetrabutylammonium cations and the azolate anions. Favorable structure–property relationships were most often achieved when changing from 4‐ and 4,5‐disubstituted anions to 3,5‐ and 2,4‐disubstituted anions. The most promising anion for use in energetic ionic liquids of those studied here, was 3,5‐dinitro‐1,2,4‐triazolate, based on its contributions to the entire set of target properties.  相似文献   

18.
Methyl trioctylphosphonium methyl carbonate [P(8881)](+)[MeOCO(2)](-) was prepared by the alkylation of trioctyl phosphine with the non-toxic dimethyl carbonate. This salt was a convenient source to synthesize different ionic liquids where the methyl trioctylphosphonium cation was coupled to weakly basic anions such as bicarbonate, acetate, and phenolate. At 90-220 °C, all these compounds [P(8881)](+)X(-); X = MeOCO(2); HOCO(2); AcO; PhO were excellent organocatalysts for the transesterification of dimethyl and diethyl carbonate with primary and secondary alcohols, including benzyl alcohol, cyclopentanol, cyclohexanol, and the rather sterically hindered menthol. Conditions were optimized to operate with very low catalyst loadings up to 1 mol% and to obtain non-symmetric dialkyl carbonates (ROCO(2)R'; R = Me, Et) with selectivity up to 99% and isolated yields >90%. The catalytic performance of the investigated ionic liquids was discussed through a cooperative mechanism of simultaneous activation of both electrophilic and nucleophilic reactants.  相似文献   

19.
An exhaustive experimental study based on X‐ray diffraction analysis, NMR, FTIR‐ATR (attenuated total reflection), and Raman spectroscopy as well as theoretical calculations is reported in order to understand how the non‐covalent intermolecular contacts are fundamental to explain structure–property relationships and allowing us to correlate a basic macroscopic property (i.e., the melting point, Tm) with the structural variables of a family of enantiopure 1,4‐dialkyl‐1,2,4‐triazolium salts. The effect of different structural vectors such as the ring size, the spatial disposition of the substituent, the substitution on the oxygen atom, the nature of the anion, or the N4 alkylation of the triazole on the intermolecular interactions of these chiral salts of a well‐defined 3D structure is reported. The non‐covalent intermolecular contacts mainly implicating the triazolium H3 proton are fundamental to explain structure–property relationships and, therefore, the physical properties of these new chiral salts, rather than simple anion–cation interactions. Overall, our findings highlight the importance of the specific supramolecular interactions for the understanding of the physical properties of triazolium salts and ionic liquids.  相似文献   

20.
Ionic liquids are low melting salts which represent a new class of non-molecular, ionic solvents. By combining different cations and anions a large number of liquids with very different physical and chemical properties can be obtained. It is possible to optimize the ionic medium for a specific application by the careful choice of the ion combination. Ionic liquids are interesting substitutes for organic solvent in catalytic reactions for many reasons: Besides their non-volatile nature offering significant engineering advantages, the unusual solubility properties of these liquids enable new multiphasic catalytic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号