首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用共沉淀法制备磁性Fe_3O_4纳米粒子,然后在乳化体系中,以戊二醛为交联剂,通过席夫碱反应制备了改性磁性壳聚糖微球(Fe_3O_4@CS)以及聚乙烯亚胺(PEI)改性磁性壳聚糖微球(Fe_3O_4@CS/PEI)。采用红外光谱、X射线粉末衍射、磁滞回线测定、扫描电子显微镜和动态光散射对微球的结构、粒径以及磁性进行了表征,通过紫外-可见分光光度计研究了微球对布洛芬的吸附能力和重复利用率。结果表明,在微球制备过程中发生的席夫碱反应不会对纳米Fe_3O_4的晶型产生影响。微球均呈现出规整的球形,分布较窄,且具有一定的磁响应性,对布洛芬的吸附模型符合Langmuir吸附等温模型和二级动力学模型。随着PEI用量的增加,微球对布洛芬的吸附能力增强,经Langmuir吸附方程拟合的最大吸附量为138.63 mg/g。同时,微球具有良好的重复使用效率,重复5次后仍能达到初始吸附量的90%以上。  相似文献   

2.
采用反相悬浮交联法制备壳聚糖微球,对微球进行羟丙基氯化及氨基化,并偶联色素配体Cibacron Blue F3GA,得到一种新型染料亲和吸附剂.以牛血清白蛋白(BSA)为目标蛋白,考察了该染料亲和吸附剂的吸附性能,发现其对BSA有较高的吸附量(95.2mg/g),吸附行为满足Langmuir吸附等温式.负载牛血清白蛋白的微球容易洗脱,洗脱率高达99%.  相似文献   

3.
为了获得高容量的阴离子交换吸附剂,本研究以Fe_3O_4磁性纳米粒子为基质,在其表面包覆聚多巴胺,然后与树枝状大分子聚乙烯亚胺反应,制得多氨基化磁性微球。此微球的离子交换容量为9.1 mmol/g。采用透射电镜、红外光谱和热重分析对材料进行了表征。以β-酪蛋白和牛血清蛋白(BSA)为模型蛋白,采用静态吸附法研究了此微球对蛋白质的吸附性能,在最佳条件下测定了微球对蛋白质的静态吸附等温线。结果表明,此微球对蛋白质的最佳吸附时间为2h,缓冲溶液的最佳pH值为7.0。在此条件下,对β-酪蛋白和BSA的最大吸附容量分别为237.5和204.5μg/mg,而对溶菌酶和核糖核酸酶A几乎不产生吸附。实验结果表明,此微球对酸性蛋白具有选择性,在蛋白质分离纯化方面具有良好的应用前景。  相似文献   

4.
本文以多孔碳纳米管/活性炭复合微球为载体, 以L-色氨酸为配基, 采用环氧氯丙烷偶联法, 制得修饰L-色氨酸的碳纳米管/活性炭复合微球(L-CNTs/AC)。采用扫描电镜、氮气吸附、傅立叶红外光谱、热分析、X射线光电子能谱等对复合微球进行表征;通过体外静态吸附法对其低密度脂蛋白(LDL)吸附能力进行初步研究。结果表明:环氧氯丙烷偶联法可接枝上L-色氨酸。复合微球中碳纳米管加入量越多, 对LDL的吸附能力越强;当碳纳米管加入量为45wt%时, 对LDL的吸附量达4.623 mg·g-1, 是未添加碳纳米管的2.3倍多。这是因为碳纳米管不仅可促进复合微球中20~100 nm孔的形成, 而且还可促进复合微球配基修饰量的增多, 从而大大增强了复合微球对LDL的吸附能力。此复合微球可望开发成一种新型的血液灌流LDL吸附剂。  相似文献   

5.
本文以多孔碳纳米管/活性炭复合微球为载体,以L-色氨酸为配基,采用环氧氯丙烷偶联法,制得修饰L-色氨酸的碳纳米管/活性炭复合微球(L-CNTs/AC)。采用扫描电镜、氮气吸附、傅立叶红外光谱、热分析、X射线光电子能谱等对复合微球进行表征;通过体外静态吸附法对其低密度脂蛋白(LDL)吸附能力进行初步研究。结果表明:环氧氯丙烷偶联法可接枝上L-色氨酸。复合微球中碳纳米管加入量越多,对LDL的吸附能力越强;当碳纳米管加入量为45wt%时,对LDL的吸附量达4.623 mg·g-1,是未添加碳纳米管的2.3倍多。这是因为碳纳米管不仅可促进复合微球中20~100 nm孔的形成,而且还可促进复合微球配基修饰量的增多,从而大大增强了复合微球对LDL的吸附能力。此复合微球可望开发成一种新型的血液灌流LDL吸附剂。  相似文献   

6.
以马来酸酐改性的壳聚糖(MAH-chitosan)和丙烯酸(AA)为单体,采用反相微乳液聚合法制备了AA含量分别为77%(AA-Cs)和29%(Cs-AA)壳聚糖/聚丙烯酸复合纳米粒子。TEM结果表明,该复合纳米粒子平均粒径为125~150nm,进而研究了其对牛血红蛋白(Hb)、牛血清白蛋白(BSA)和溶菌酶(Ly)吸附和脱附行为。AA-Cs对各种蛋白的吸附量均较高;而Cs-AA对3种蛋白的吸附则具有一定选择性。AA-Cs对等电点低于脱附pH值的Hb的脱附量较大。Cs-AA粒子在较低pH值(pH=3.4)时对吸附有利,但在高pH值(pH=6.6)进行吸附时,对脱附更为有利。  相似文献   

7.
利用ZnO诱导制备了ZnO@ZIF-8复合微球材料并将其用于溶液中U(Ⅵ) 的去除. 研究表明, 制备的ZnO@ZIF-8复合微球的直径为1~7 μm, pH=4时, 在水溶液中对U(Ⅵ) 的吸附量最大, 达到145.32 mg/g, 吸附机理可能与铀酰离子与复合材料之间的配位作用和氢键作用相关. 考虑到复合微球中用于U(Ⅵ) 吸附的有效成分ZIF-8的含量仅为12.6%, 以ZIF-8含量计算, 该材料对U(Ⅵ) 的单位吸附量高达1137 mg/g.  相似文献   

8.
近年来,ZIFs型金属-有机骨架材料被发现可作为吸附剂应用于吸附分离水中有机污染物。但由于ZIFs的非球形型粉末形态及强的疏水性使其在水溶液中分散性差,不利于充分发挥吸附性能。针对这一不足,本文以聚丙烯酸酯羧基微球(PC-SMM)为载体,通过原位生长法在其表面生长一层ZIF-8纳米粒子外壳层,制备既具备ZIF-8粒子的结构特性又呈现出微球形态的ZIF-8/PC-SMM复合微球。以MG水溶液为分离体系来评价ZIF-8/PC-SMM复合微球的吸附分离性能,结果显示,ZIF-8/PC-SMM复合微球对MG的吸附量高达101.2mg/g,与ZIF-8及PC-SMM微球相比,其吸附性能得到明显提高。  相似文献   

9.
碳纳米管/活性炭复合微球的制备及其对VB12的吸附应用   总被引:1,自引:0,他引:1  
采用反相乳液法制备碳纳米管/壳聚糖复合微球(CNTs/CTS), 并对其进一步炭化、活化制得碳纳米管/活性炭复合微球(CNTs/AC). 以此复合微球为吸附材料, 探索了其对中分子代表物质VB12的吸附. 研究结果表明, 碳纳米管含量70%(w)的复合微球经水蒸气适当活化后球形度好、吸附性能优异, 其对VB12的吸附量达23.59 mg·g-1, 分别是活性炭和大孔吸附树脂的5.4和2.7倍. 分析表明这是由于碳纳米管/活性炭复合微球具有发达的中孔结构.  相似文献   

10.
采用反相悬浮聚合法制备了甲基丙烯酸羟乙酯(HEMA)与N-乙烯基吡咯烷酮(NVP)的交联共聚微球HEMA/NVP,然后采用"接出"法,实施了甲基丙烯酸(MAA)在交联微球表面的接枝聚合,制得了接枝微球PMAA-HEMA/NVP.以溶菌酶(LYZ)为模型碱性蛋白,深入研究了接枝微球PMAA-HEMA/NVP对碱性蛋白的吸附性能与吸附机理.测定了微球PMAA-HEMA/NVP的zeta电位,考察了PMAA接枝度、介质pH值及离子强度等因素对体系吸附性能的影响.结果表明,在较大的pH范围内,接枝微球PMAA-HEMA/NVP的zeta电位为绝对值较大的负值,即其表面携带有高密度的负电荷.在强静电相互作用的驱动下,接枝微球PMAA-HEMA/NVP对溶菌酶表现出很强的吸附能力.随介质pH值的增高,接枝微球对溶菌酶的吸附容量呈现先增大后减小的变化趋势,在与溶菌酶等电点接近的pH值处(pH=9),具有最大的吸附容量(90mg.g-1);离子强度对接枝微球的吸附能力也有较大的影响,当pH9时,溶菌酶吸附容量随NaCl浓度的增高而减小;当pH9时,吸附容量随NaCl浓度的增高而增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号