首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
通过[Na~+,Tb~(3+)]离子对取代[Ba~(2+),Ba~(2+)]离子对,制备了一系列的Ba_(5-2x-y)Tb_(x )Na_x(PO_4)_3Cl∶y Eu~(2+)荧光粉。通过X射线粉末衍射、扫描电子显微镜、光致激发和发射光谱对其结构、形貌、组成及发光性能进行研究。结果表明:在354 nm激发下,Ba_(3.97)Tb_(0.50)Na_(0.50)(PO_4)_3Cl∶0.03Eu~(2+)样品的发射光谱既包含了Eu~(2+)位于450 nm左右的宽带特征发射,又包含了Tb~(3+)位于490、545、583和622 nm的窄峰特征发射。由于存在Eu~(2+)→Tb~(3+)的能量传递,使得Ba_(3.97)Tb_(0.50)Na_(0.50)(PO_4)_3Cl∶0.03Eu~(2+)中Tb~(3+)的发光强度相对于Ba_(4.00)Tb_(0.50)Na_(0.50)(PO_4)_3Cl中Tb~(3+)的发光强度显著提高。通过改变[Na~+,Tb~(3+)]离子对的浓度,实现了对Ba_(5-2x-y)Tb_(x )Na_x(PO_4)_3Cl∶y Eu~(2+)荧光粉的光谱调控。当x=0.50时,Ba_(4.97-2x)Tb_(x )Na_x(PO_4)_3Cl∶0.03Eu~(2+)中Tb~(3+)的发光强度达到最大。  相似文献   

2.
采用水热法制备出Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca_9Y(PO4)7基质中引入Ce~(3+),Tb~(3+)离子对发光性能的影响规律。研究发现因Tb~(3+)离子自身能量交叉驰豫的存在,使得单掺Tb~(3+)时,通过调节Tb~(3+)离子的浓度可以实现对发光颜色的控制。同时研究了Ce~(3+)-Tb~(3+)之间的能量传递为电多极相互作用的偶极-四极机制,Ce~(3+)-Tb~(3+)之间最大的能量传递效率为55.6%。Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

3.
采用油酸辅助水热法合成了具有上下转换发光性能的NaLuF_4∶Ce~(3+)、NaLuF_4∶Ce~(3+),Tb~(3+)、NaLuF_4∶Yb~(3+),Tm~(3+)、NaLuF_4∶Yb~(3+),Er~(3+)以及NaLuF_4∶Yb~(3+),Er~(3+),Tm~(3+)荧光粉材料。X射线衍射(XRD)表征结果表明产物各个衍射峰与标准卡片PDF#27-0726较好的吻合,得到六方相NaLuF_4晶体。扫描电镜(SEM)显示产物形貌为六棱柱,由粒径分布图可知属于微米级材料。NaLuF_4基质中单掺Ce~(3+)时,研究掺杂浓度对样品发光性能的影响表明NaLuF_4∶0.09Ce~(3+)的发光强度最大。双掺Ce~(3+)、Tb~(3+)时,详细讨论了NaLuF_4基质中Ce~(3+)→Tb~(3+)的能量传递机制,可认为是偶极-四极作用。在980 nm激光激发下,增大Yb~(3+)的掺杂浓度可以使Er~(3+)的红(~4F_(9/2)→~4I_(15/2))/绿(~2H_(11/2)→~4I_(15/2),~4S_(3/2)→~4I_(15/2))光发射比例增大,Er~(3+)的红光和绿光发射过程均属于双光子发射,Tm~(3+)的蓝光发射过程属于三光子发射,并且NaLuF_4∶0.20Yb~(3+),0.005Er~(3+),0.005Tm~(3+)样品实现了白光发射(x=0.335,y=0.385)。  相似文献   

4.
为了探究在Dy~(3+)掺杂Ba_3Y(PO_4)_3荧光粉中共掺Eu~(3+)离子对其发光性能的影响,我们采用传统高温固相法制备了一系列Dy~(3+)、Eu~(3+)单掺杂和共掺杂Ba_3Y(PO_4)_3荧光粉。通过X射线衍射(XRD)、荧光发射光谱和荧光衰减曲线对样品进行了表征。结果表明,所制备的荧光粉呈闪铋矿立方相。在近紫外光激发下,Ba_3Y(PO_4)_3∶Dy~(3+)发射光谱在487和578 nm处有两个窄带发射峰,呈冷白光发射;Ba_3Y(PO_4)_3∶Eu~(3+)发射光谱的窄带发射位于594和616 nm处,呈发橙红光。在Ba_3Y(PO_4)_3∶Dy~(3+),Eu~(3+)中,由于Eu~(3+)离子补偿Dy~(3+)冷白光发射所缺的红色组分,从而实现了色纯度高、色温适中的暖白光发射。进一步探索了Ba_3Y(PO_4)_3∶Dy~(3+),Eu~(3+)荧光粉发光机理。所制备的Ba_3Y(PO_4)_3∶Dy~(3+),Eu~(3+)单基质白光荧光粉在白光近紫外激发白光二极管(UVWLED)领域具有潜在应用价值。  相似文献   

5.
采用高温固相法制备了Sr_3Y(BO_3)_3:xTm~(3+),yDy~(3+)荧光粉,并通过XRD、SEM和荧光光谱仪对样品的物相、微观形貌、发光性能、能量传递机制和CIE色坐标进行了分析。结果表明:Sr_3Y(BO_3)_3:xTm~(3+)荧光粉在监测波长为359 nm时发射蓝光,Tm~(3+)的浓度淬灭点为x=0.08;在Sr_3Y(BO_3)_3:0.08Tm~(3+),yDy~(3+)荧光粉中,随着Dy~(3+)掺杂浓度的增加,Tm~(3+)的发光强度降低而Dy~(3+)发光强度却先增加后降低,Dy~(3+)的浓度淬灭点为y=0.1;通过改变Dy~(3+)掺杂浓度或改变激发光的波长,均可实现发射光的颜色可调;在Tm~(3+)-Dy~(3+)离子之间存在能量传递。当Dy~(3+)掺杂浓度(物质的量分数)为0.15时能量传递效率达75.14%,能量传递机制为电偶极-电偶极相互作用。  相似文献   

6.
采用水热法成功合成了形貌可控的NaCaGd_(1-x)(WO_4)_3∶x Eu~(3+)红色荧光粉。系统地研究了初始溶液pH值、反应温度和Eu3+掺杂浓度对NaCaGd_(1-x)(WO_4)_3∶x Eu~(3+)荧光粉物相结构、微观形貌和发光性能的影响。结果表明,当pH值为9、反应温度为180℃时,可合成单相四方晶系的NaCaGd(WO_4)_3,且颗粒微观形貌呈现分散性好、尺寸较均一的四方盘状纳米晶。在394 nm激发下,荧光粉显现典型的红光发射,其对应于Eu~(3+)的特征4f-4f跃迁。荧光粉发射光谱的强度随着pH值、反应温度及Eu~(3+)掺杂浓度的变化而变化。当pH=9、反应温度为180℃时,NaCaGd_(1-x)(WO_4)_3∶x Eu~(3+)(x=1)获得最佳发光强度。此外,研究了NaCaEu(WO_4)_3荧光粉的热稳定性,结果显示随着温度的升高,荧光粉发光强度逐渐降低。最后,通过理论计算得到荧光粉的色坐标和色纯度分别为(0.658,0.341)和96.1%,接近标准红色CIE坐标(0.673,0.327)。  相似文献   

7.
采用高温固相法合成了一系列Ca_(2-x-y)Sr_(y-x)SiO_4∶x Ce~(3+),x Li~+蓝色固溶体荧光粉。XRD结果表明,所合成的固溶体荧光粉均为单一物相。随着Sr~(2+)成分的增加,Ca_(2-y)Sr_y SiO_4物相从单斜晶系β-Ca_2SiO_4向正交晶系α′-Ca_2SiO_4转变,发射光谱逐渐红移。组成为Ca_(1.75)Sr_(0.25)SiO_4时,荧光粉的发射波长最长(454 nm),Stokes位移最大。基质为Ca_(1.1)Sr_(0.9)SiO_4的晶体结构可诱导掺杂离子Ce~(3+)取代SrO_(10)格位、Li~+取代CaO8格位。优化的荧光粉Ca_(1.05)Sr_(0.85)SiO_4∶0.05Ce~(3+),0.05Li~+(CS_(0.85)SO∶CeLi)在375 nm紫外光激发下,发射445 nm的蓝光,内量子效率(IQE)达到91.18%,200℃时发射强度保持室温发光强度的98.70%。根据晶体结构、晶体场分裂和掺杂离子质心位移等理论,讨论了CS_(0.85)SO∶CeLi综合发光效应最佳的内在原因。  相似文献   

8.
采用溶胶-凝胶法制备了LiGd(MoO_4)_2∶Dy~(3+),Eu~(3+)系列荧光粉。用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、荧光光谱仪等对所得样品的结构、形貌和发光性能进行了表征,并研究了其能量传递机理。结果表明:白钨矿结构的Li Gd(Mo O_4)_2∶Dy~(3+),Eu~(3+)荧光粉的形貌为不规则颗粒,其粒径为1.8μm。在354 nm近紫外光激发下,该荧光粉显示出Dy~(3+)的特征黄、蓝光发射和Eu~(3+)的特征红光发射。计算Dy~(3+)和Eu~(3+)的临界距离为1.383 nm,Dy~(3+)→Eu~(3+)之间能量传递机理为偶极-四极相互作用。通过调节Dy~(3+)、Eu~(3+)的掺杂浓度,荧光粉可实现暖白光发射。此外,详细研究了稀土离子(Dy~(3+),Eu~(3+))的掺杂浓度与荧光粉的色温值之间的关系。  相似文献   

9.
利用高温固相反应制备了Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)(x=0,0.05,0.10,0.15,0.20,0.25,0.30,0.325,0.35,0.375,0.40,0.425)一系列试样,系统研究了Mn~(2+)取代基质中Ca~(2+)进入晶格中对其晶胞参数和光谱特性影响。Mn~(2+)以类质同相替代Ca~(2+)进入晶体晶格中,形成了连续固溶体,试样均为三斜晶系,P空间群。随着Mn~(2+)掺杂量增加,晶胞参数(a,b,c,γ)和晶胞体积V均呈线性递减,且a轴减幅最大,b轴最小,晶面夹角(α,β)呈线性递增。在357 nm激发下,获得的Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)发射光谱均有Eu~(2+)的4f→5d跃迁产生的433 nm和Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)跃迁产生的567 nm两个宽带谱组成。在荧光粉Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)中,Eu~(2+)与Mn~(2+)间存在能量传递,Eu~(2+)→Mn~(2+)间能量传递的临界距离R_(Eu-Mn)=0.947 1 nm,Eu~(2+)→Mn~(2+)能量传递过程为电四极-电四极的多极矩相互作用。通过改变Mn~(2+)掺杂量,在紫外芯片的有效激发下,荧光粉的发射光颜色可从蓝光区(0.158 2,0.086 0)逐渐移至近白光区(0.295 3,0.298 9),可获得一种紫外激发适用于白光LED的单一组分白色荧光粉。  相似文献   

10.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

11.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

12.
采用高温固相法合成了Sr1-x-yMgP2O7:xCe3+,yTb3+荧光粉.研究了荧光粉的晶体结构、发光特性、荧光寿命、能量传递机理和荧光粉的热稳定性.研究结果表明:在SrMgP2O7基质中,Ce3+的发射峰值为398nm,Tb3+的主发射峰值为545nm,它们分别属于5d-4f跃迁和5D4→7F5跃迁.Ce3+和Tb3+共掺时,Ce3+和Tb3+通过电偶极子-电偶极子相互作用发生能量传递,能量传递的临界距离为0.614nm.通过计算得到单掺杂Ce3+、Tb3+时热猝灭过程的激活能分别为0.122和0.111eV,Tb3+离子的发光热稳定性比Ce3+离子的好.  相似文献   

13.
采用共沉淀法制备了稀土正磷酸盐荧光粉(La,Gd)PO4:RE3+(RE=Eu,Tb).红外光谱分析发现GdPO4的红外光谱吸收峰与LaPO4一致,只是峰位向高波数方向移动.(La,Gd)PO4:RE3+的真空紫外光谱特性研究表明,Gd3+在能量传递过程中起中间体作用.XPS研究揭示,LaPO4的价带由O2-的2p能级构成,而GdPO4的价带则是由O2-的2p能级和Gd3+的4f能级共同构成.  相似文献   

14.
以Ba(NO3)2、NaBH4、Er2O3和CeO2为原料, 在十六烷基三甲基溴化铵(CTAB)表面活性剂辅助下, 采用水热法制备了β-BaB2O4 (β-BBO)纳米棒, 稀土离子Er3+单掺杂的β-BBO(β-BBO:Er3+)及Er3+和Ce3+/Ce4+共掺杂的β-BBO(β-BBO:Er3+/Ce3+/Ce4+)纳米棒. 通过X射线粉末衍射(XRD)、傅里叶变换红外(FTIR)光谱、拉曼光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和光致发光(PL)光谱分别对样品的物相、结构、形貌、成分及光致发光性质进行了表征. 研究结果表明: 微量稀土离子掺杂并不改变β-BBO的结构, 制得的纳米棒尺寸均匀, 长度在200-500 nm 之间, 直径在10-20 nm 之间; β-BBO:Er3+和β-BBO:Er3+/Ce3+/Ce4+纳米棒在400nm光激发下, 在可见光范围内都观察到中心波长为515和542 nm的绿光. 对发光机理的初步研究表明: 发光分别对应于Er3+的2H11/2→4I15/2, 4S3/2→4I15/2跃迁, 铈离子以Ce3+和Ce4+两种形式存在于体系中, Ce3+对Er3+起敏化作用, 可以显著增强β-BBO:Er3+/Ce3+/Ce4+纳米棒的发光强度, 存在Ce3+→Er3+的能量传递过程.  相似文献   

15.
采用高温固相法合成了Ba(Y1-0.5x-yAly)2S4:xHo3+系列荧光粉。在465 nm蓝光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于492、543和661 nm处,分别对应于Ho3+的5F3→5I8,(5S2,5F4)→5I8和5F5→5I8跃迁发射。研究了Ho3+和Al3+掺杂量对BaY2S4:Ho3+发光性能的影响。结果表明,随着Ho3+掺杂量的逐渐增大,荧光粉的发光颜色由绿色逐渐向红色转变;适量Al3+取代Y3+可以提高BaY2S4:Ho3+荧光粉的发光强度。荧光粉Ba(Y0.665Al0.3)2S4:0.07Ho3+在蓝光(465 nm)激发下发射黄光,是一种潜在的白光LED用黄色荧光粉。  相似文献   

16.
采用高温固相法合成了Ba2-xB2O5:xTb3+绿色荧光粉。XRD图谱表明合成物质为纯相的Ba2B2O5晶体。该样品在256 nm(4f8→4f75d1)处有最强激发;有4个发射峰,分别位于489 nm(5D4→7F6),545 nm(5D4→7F5),585 nm(5D4→7F4)和622 nm(5D4→7F3);其中在545 nm处有最强发射。随着Tb3+掺杂浓度的不同,激发峰与发射峰的强度先增大后减小,当x=0.7时最佳。研究了电荷补偿剂Na+对发光性能的影响,样品的发射光谱强度随Na+掺杂浓度的增大而增大,当掺杂浓度达到或超过Tb3+浓度后发射光谱强度下降。  相似文献   

17.
采用高温固相法制备了上转换白光荧光粉AlF3-YbF3:Er3+/Tm3+。通过XRD物相分析可知:上转换白光荧光粉AlF3-YbF3:Er3+/Tm3+是由三方AlF3相和正交YbF3相组成;利用发射光谱研究了该荧光粉的上转换发光性能,并且分析了当固定Er3+离子掺杂浓度时,Tm3+离子掺杂浓度对上转换白光荧光粉AlF3-YbF3:Er3+/Tm3+色度的影响,进而提出其上转换能量传递机制。结果表明:在980 nm激光激发下,波长为410 nm的紫光峰、550 nm的绿光峰和660 nm的红光峰分别对应于荧光粉中Er3+离子的2H9/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2能级的跃迁,而波长为360 nm的紫外光峰、450 nm的蓝光峰、700 nm的红光峰,分别对应于荧光粉中Tm3+离子的1D2→3H6,1G4→3H6和1G4→3F4能级的跃迁,Er3+离子发出的光与Tm3+离子发出的光最终混合成色坐标为x=0.32,y=0.36的白光。此外,通过980 nm半导体激光器和EPM 2000 Dual-channel Joulemeter/Power meter测得该荧光粉最大上转换效率为6.90%。  相似文献   

18.
采用高温固相反应合成了M5-2xSmxNax(PO4)3F(M=Ca,Sr,Ba)荧光体,研究了其在真空紫外-可见光范围的发光特性。发现在Ca5(PO4)3F中Sm3+的电荷迁移带约在191 nm,在Sr5(PO4)3F中约在199 nm,而在Ba5(PO4)3F中约在204 nm,随着被取代碱土离子半径的增大电荷迁移能量逐渐减小。比较了M5(PO4)3F (M=Ca,Sr,Ba)中Sm3+和Eu3+电荷迁移能量的关系。  相似文献   

19.
采用高温固相法成功制备了KNaCa2(PO4)2:Tb3+绿色荧光粉,并研究了其发光性质。测量了其激发和发射光谱,样品发射峰位于418,440,492,545,586,622 nm,分别对应Tb3+的5 D3→7 F5,5 D3→7 F4,5 D4→7 F6,5 D4→7 F5,5 D4→7 F4,5 D4→7 F3能级跃迁,主发射峰位于545 nm。主激发峰位于350~390 nm之间,属于4f→4f电子跃迁吸收,与InGaN管芯匹配。确定了在KNaCa2(PO4)2基质中Tb3+浓度对其发光强度的影响及其自身浓度猝灭机制。研究了不同电荷补偿剂对KNaCa2(PO4)2:Tb3+材料发光的影响,其中Li+离子改善其发光强度最为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号