首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated transport in Nb-InAs hybrid structures in perpendicular magnetic fields up to the quantum Hall regime. Due to the high contact quality of our samples, Andreev reflection dominates the transport properties in a range of experimental parameters. Our experiments were performed on periodic arrays of Nb filled stripes or antidots in an InAs-based 2DEG. According to geometry and field strength we observe the following effects: At low fields, up to a few flux quanta per unit cell, we find phase-coherent behavior, such as flux-periodic oscillations. At slightly higher fields, the Andreev reflection probability is determined by induced superconductivity in the 2DEG, which is gradually suppressed by an increasing magnetic field. In the arrays of Nb filled antidots we find that the commensurability peaks are suppressed since Andreev reflection restores regular motion in velocity space. Due to the high critical field of the Nb nanostructures, we can also enter the edge state regime, where we observe a pronounced increase of the amplitude of 1/B-periodic magnetoresistance oscillations. The latter can be traced to an enhanced backscattering of Andreev-reflected edge channels, which contain both electrons and holes. PACS 74.45.+c; 73.43.Qt; 73.63.-b  相似文献   

2.
We show magnetoresistance in excess of 1000% in trilayers containing highly spin-polarized La0.7Ca0.3MnO3 and high-Tc superconducting YBa2Cu3O7. This large magnetoresistance is reminiscent of the giant magnetoresistance (GMR) in metallic superlattices but with much larger values, and originates at spin imbalance due to the injection of spin-polarized carriers. Furthermore, in contrast to ordinary GMR, the magnetoresistance is intimately related to the superconductivity in the YBa2Cu3O7 layer and vanishes in the normal state. This result, aside from its fundamental importance, may be of interest for the design of novel spintronic devices based on ferromagnet/superconductor structures.  相似文献   

3.
We have measured the electrical resistivity, magnetoresistance and Hall effect on several new single-crystal samples and one polycrystalline sample of α-U. The residual resistivity ratios of these samples vary from 13 to 315. Matthiessen's law appears to hold above the onset of the charge-density wave phase transitions that begin near 43?K, but not below this temperature. Sharp features at all three charge-density wave transitions are observed and the effects of high magnetic fields on them are presented and discussed. The magnetoresistance is anisotropic, reaches 1000% at 2?K and 18?T and does not exhibit Kohler scaling. The Hall coefficient is positive, independent of magnetic field and slightly temperature dependent above about 40?K in agreement with earlier studies. Below 40?K the Hall coefficient changes sign as the temperature falls, varies with field and becomes much more strongly negative at the lowest temperatures than has been reported. Some of our results suggest that a spin-density wave may coexist with the charge-density wave states. Superconductivity is observed in two of our samples; we argue that it is intrinsic to α-U and suggest that it is consistent with a two-band model. Several parameters characterizing the transport and superconductivity of α-U are estimated.  相似文献   

4.
We have measured the magnetoresistance ρ(H,T0) of the magnetic Kondo lattice CeAl2 at temperatures T0 in the range 0.035 – 1.3 K, well below the Néel temperature TN=3.8 K, in magnetic fields H up to 145 k0e. The ρ vs H curve exhibits a rapid decrease between H=45–65 kOe corresponding to the metamagnetic transition at H=HM. The resistivity then levels out to a value which depends only weakly on field and temperature. For HM a small positive magnetoresistance was observed with the derivative dρ/dH increasing as the temperature is lowered. The present results are compared with the ρ(H,T0) data obtained for the CePb3 magnetic Kondo lattice, where the decrease in the resistivity at HHM was considered earlier to be evidence of field induced superconductivity.  相似文献   

5.
Understanding the normal electronic state is crucial for unveiling the mechanism of unconventional superconductivity(SC). In this paper, by applying a magnetic field of up to 37T on FeSe single crystals, we could reveal the normal-state transport properties after SC was completely suppressed. The normal-state resistivity exhibited a Fermi liquid behavior at low temperatures. Large orbital magnetoresistance(MR) was observed in the nematic state with H//c, whereas MR was negligible with H//ab. The magnitude of the orbital MR showed an unusual reduction, and Kohler's rule was severely violated below 10-25 K;these were attributable to spin fluctuations. The results indicated that spin fluctuations played a paramount role in the normalstate transport properties of FeSe albeit the Fermi liquid nature was at low temperature.  相似文献   

6.
Resistance, magnetoresistance and Hall effect measurements have revealed a variety of eletronic changes induced in single crystals of TaSe2 when alloyed with iron in concentrations from 0–10 at.%. Both substitutional and excess iron alloys have been studied and in each case different phases of TaSe2 are produced below the growth temperature depending on the iron concentration. Resistance minima, anomalous Hall effects, negative magnetoresistance, and superconductivity can all be observed in this system.  相似文献   

7.
丁磊  王聪  褚立华  纳元元  闫君 《物理学报》2011,60(9):97507-097507
近年来,研究发现反钙钛矿化合物Mn3AX(A=Cu,Zn,Sn,Ni,Al,Ga等;X=N/C)具有超导,巨磁阻,近零电阻温度系数,负膨胀,磁致伸缩,压磁效应,以及磁卡效应等丰富的物理性能,因此此类化合物受到人们越来越多的关注.反钙钛矿Mn3AX化合物的结构和物性的研究,将对我们深入认识材料的"本-构"关系具有重要的意义.本文重点综述了部分反钙钛矿Mn3AX化合物奇特的物理性质,尤其是 关键词: 反钙钛矿 磁相变 负热膨胀 电输运  相似文献   

8.
Superconducting properties of carbon nanotubes   总被引:1,自引:0,他引:1  
Metallic single wall carbon nanotubes have attracted much interest as 1D quantum wires combining a low carrier density and a high mobility. It was believed for a long time that low temperature transport was exclusively dominated by the existence of unscreened Coulomb interactions leading to an insulating behavior at low temperature. However experiments have also shown evidence of superconductivity in carbon nanotubes. We distinguish two fundamentally different physical situations. When carbon nanotubes are connected to superconducting electrodes, they exhibit proximity induced superconductivity with supercurrents which strongly depend on the transmission of the electrodes. On the other hand intrinsic superconductivity was also observed in suspended ropes of carbon nanotubes and recently in doped individual tubes. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsion at low temperature, and enables investigation of superconductivity in a 1D limit never explored before. To cite this article: M. Ferrier et al., C. R. Physique 10 (2009).  相似文献   

9.
Measurements of the resistivity, magnetoresistance, and penetration depth were made on films of La1.85Sr0.15CuO4, with up to 12 at. % of Zn substituted for the Cu. The results show that the quadratic temperature dependence of the inverse square of the penetration depth, indicative of d-wave superconductivity, is not affected by doping. The suppression of superconductivity leads to a metallic nonsuperconducting phase, as expected for a pairing mechanism related to spin fluctuations. The metal-insulator transition occurs in the vicinity of k(F)l approximately 1, and appears to be disorder driven, with the carrier concentration unaffected by doping.  相似文献   

10.
We present magnetotransport studies on a series of BaFe_(2-x)Ni_xAs_2(0.03 ≤ x ≤ 0.10) single crystals. In the underdoped(x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a peak at 22 K, which is associated with the onset of filamentary superconductivity(FLSC). FLSC is suppressed by an external magnetic field in a manner similar to the suppression of bulk superconductivity in an optimally-doped(x = 0.10) compound, suggesting the same possible origin as the bulk superconductivity. Our magnetoresistivity measurements reveal that FLSC persists up to the optimal doping and disappears in the overdoped regime where the long-range antiferromagnetic order is completely suppressed, pointing to a close relation between FLSC and the magnetic order.  相似文献   

11.
张玺  刘超飞  王健 《物理学报》2015,64(21):217405-217405
超导自发现以来, 已成为凝聚态物理领域最重要的方向之一. 近年来, 低维材料制备技术的进步使得一维或二维的超导特性实验研究成为可能. 本文在简要介绍超导现象的基础上, 重点回顾了近些年二维超导薄膜和一维超导纳米线的制备和电输运研究, 以及在低维超导体中发现的相移、近邻效应、铁磁超导相互作用和高温超导等新奇的现象, 并对该领域的进一步发展做出了展望.  相似文献   

12.
The superconductivity and magnetoresistance (MR) of epitaxial bilayers consisting of YBa2Cu3O7?δ (YBCO) and La0.67Sr0.33MnO3 (LSMO) are investigated with respect to the proximity and spin polarization effects. In the region of the mixed vortex state near the onset temperature of the superconducting transition, the diffusion of the spin-polarized quasiparticles from the LSMO to the YBCO is evidenced by their distinct magnetotransport behaviors, which are characterized by two superconducting transitions. It is revealed that the second transition is strongly dependent on the applied magnetic field, demonstrating an abnormal pair-breaking effect. This effect, together with the reduced MR, is believed to arise from an increase in the spin injection efficiency induced by the suppressed interfacial spin scattering, disclosing a new perspective for understanding the magnetotransport phenomena in proximity-coupled superconductor/ferromagnet (S/F) hybrids.  相似文献   

13.
芦佳  甘渝林  颜雷  丁洪 《物理学报》2021,(4):327-332
在铁磁/超导异质结中,铁磁体的交换场通过近邻效应将导致超导体准粒子态密度的塞曼劈裂.基于该效应,在外磁场不强的情况下,通过外加磁场可以有效地调节铁磁/超导界面处的交换作用,从而实现超导体在正常态和超导态之间转换,产生极大磁电阻.本文利用脉冲激光沉积方法制备了EuS/Ta异质结并研究了其电磁特性.Ta在3.6 K以下为超导态,EuS在20 K以下为铁磁态.在2 K时,EuS/Ta异质结中可观测蝴蝶型磁滞回线,证明在低磁场下(<±0.18 T)异质结中EuS铁磁态和Ta超导态共存.磁输运测试表明,通过施加外磁场可以有效调节EuS的交换场,随着交换场的增大,同时也加强了界面处的交换作用,从而抑制Ta的超导态,实现了Ta在超导态和正常态之间的转变,在EuS/Ta异质结中观测到了高达144000%的磁电阻.本文制备的EuS/Ta异质结具有极大磁电阻效应,在自旋电子学器件中有潜在的应用前景.  相似文献   

14.
We present a detailed study of the dielectric and charge transport properties of the antiferromagnetic cubic spinel HgCr2S4. Similar to the findings in ferromagnetic CdCr2S4, the dielectric constant of HgCr2S4 becomes strongly enhanced in the region below 60-80 K, which can be ascribed to polar relaxational dynamics triggered by the onset of ferromagnetic correlations. In addition, the observation of polarization hysteresis curves indicates the development of ferroelectric order below about 70 K. Moreover, our investigations in external magnetic fields up to 5 T reveal the simultaneous occurrence of magnetocapacitance and magnetoresistance of truly colossal magnitudes in this material.  相似文献   

15.
16.
The effect of high pressure on electron transport and on the field dependence of the transverse magnetoresistance has been studied in a hybrid nanocomposite based on the Zn0.1Cd0.9GeAs2 matrix and MnAs clusters. A record high negative magnetoresistance of ~74% is formed near a pressure-induced structural transition (P≈ 3.5 GPa). The considered scattering mechanisms include both the contribution from MnAs clusters at relatively low pressures (up to 0.7 GPa) and spin-dependent scattering by localized magnetic moments in the Mn-substituted structure of the matrix in the region of the structural transition. The presence of the positive magnetoresistance region associated with the two-band transport model in the high-pressure phase, as well as the large negative magnetoresistance, is described in the framework of the semiempirical Khosla–Fischer expression.  相似文献   

17.
Electric transport and scanning tunneling spectrum(STS)have been investigated on polycrystalline samples of the new superconductor Bi4O4S3.A weak insulating behavior in the resistive curve has been induced in the normal state when the superconductivity is suppressed by applying a magnetic field.Interestingly,a kink appears on the temperature dependence of resistivity near 4 K at all high magnetic fields above 1 T when the bulk superconductivity is completely suppressed.This kink associated with the upper critical field as well as the wide range of excess conductance at low fields and high temperatures is explained as the possible evidence of strong superconducting fluctuation.From the tunneling spectra,a superconducting gap of about 3 meV is frequently observed yielding a ratio of 2Δ/kB TC~16.6.This value is much larger than the one predicted by the BCS theory in the weak coupling regime(2Δ/kB TC~3.53),which suggests the strong coupling superconductivity in the present system.Furthermore,the gapped feature persists on the spectra until 14 K in the STS measurement,which suggests a prominent fluctuation region of superconductivity.Such a superconducting fluctuation can survive at very high magnetic fields,which are far beyond the critical fields for bulk superconductivity as inferred both from electric transport and tunneling measurements.  相似文献   

18.
A two-dimensional interacting magnetic domains model is examined to explain the colossal magnetoresistance (CMR) recently observed in manganese-oxides. Electrons transport properties were studied by using Landauer's multichannel transport theory and recursive Green's function technique. Colossal magnetoresistance shows up in this system. The temperature dependence of system's MR is also studied.  相似文献   

19.
A single-crystalline film of Sr2CoO4 with square-lattice CoO2 sheets (K2NiF4-type structure) was synthesized, and its electronic properties were characterized. The compound exhibited both ferromagnetic and metallic behaviors, with a fairly high Curie temperature T(C) of approximately 250 K, in contrast to the superconductivity recently found in a triangular-lattice CoO2-sheet compound. The film's large magnetoresistance with current perpendicular to the CoO2 plane showed field-hysteretic behavior analogous to tunneling magnetoresistance. The electronic structure of Sr2CoO4 was also investigated to characterize the quasi-two-dimensional ferromagnetic metal state in terms of optical spectroscopy and first-principles calculation.  相似文献   

20.
都有为 《物理》2005,34(11):804-808
文章介绍了2004年度国家自然科学二等奖获奖成果[21].类钙钛矿型材料是一类物理内涵极其丰富的化合物,它是著名的高温超导材料、铁电材料、压电材料,又是庞磁电阻效应材料,目前又显示出具有大磁熵变效应与隧道磁电阻效应.文章作者系统地研究了锰钙钛矿磁性化合物的磁熵变与组成、微结构以及颗粒尺寸的关系,研究结果表明,磁性钙钛矿化合物具有显著的磁熵变,居里温度易调,并且化学稳定性佳,从而成为一类新型的磁制冷工质候选材料.此外,文章作者还研究了钙钛矿化合物纳米颗粒体系的磁电阻效应,发现除人们发现的居里温度附近的本征的庞磁电阻效应外,在很宽的低温区,存在与温度不甚敏感的隧道磁电阻效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号