首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
建立了近红外漫反射光谱检测不同贮藏期磨盘柿的内部品质的数学模型,并评价其应用价值.本文采用可溶性固形物和硬度作为评价指标,在全光谱范围内(400-2500nm)分别建立了常温贮藏期、冷藏期和常温与冷藏结合的定标模型,使用最优模型对35个未知样品进行预测.结果显示,应用改进偏最小二乘法和一阶导数处理的常温模型定标性能最优,可溶性固形物和硬度的预测均方根误差(RMSEP)分别为0.498和1.399,预测值与化学值的决定系数(R2)分别为0.831和0.911,相对分析误差(RPD)分别为2.15和2.75.本研究表明,近红外漫反射技术对不同贮藏期磨盘柿内部品质的快速无损检测具有可行性.  相似文献   

2.
脂肪作为牛奶中的重要营养成分,是评价牛奶质量的一项重要指标。高光谱图像技术能够提供几十到数千波长的数据,能够反映牛奶中不同组成成分细微的光谱差异;另一方面,相邻波段之间往往具有很强的相关性,不仅增加了计算量,而且容易造成维数灾难等问题,因此对高光谱数据进行波段选择非常重要。工作中提出了PLS-ACO特征波段选择方法,并与遗传算法结合,组合成了PLS-ACO-GA的特征波段选择新方法。提出的两种方法以蚁群算法为基础,PLS回归模型回归系数的绝对值作为评价波长重要性的主要依据,以此作为蚁群算法的启发式信息,利用蚁群算法进行智能搜索,结合遗传算法,产生更多优秀的特征波段组合,避免PLS-ACO算法得到的只是局部最优解,得到的最优波段组合能够更好的反映牛奶中脂肪成分的信息;通过计算波长贡献率,筛选出最优波段组合,并与遗传算法,CARS算法和基本蚁群算法光谱特征选择方法比较,最后比较不同特征选择方法下的PLS回归模型预测效果。PLS-ACO, PLS-ACO-GA, CARS, GA和ACO分别筛选了牛奶样品光谱中的18,16,40,43和42个特征波段。其中PLS-ACO-GA筛选波段后的PLS预测模型效果最好,预测集R2p和RMSEP分别为0.997 6和0.062 2,PLS-ACO次之,预测集R2p和RMSEP分别为0.997 0和0.077 8。PLS-ACO和PLS-ACO-GA不仅减少了特征波段数量,而且提高了模型的精度。对PLS-ACO-GA进行特征波段选择后的数据,建立MLR,RFR和PLS回归预测模型。MLR预测模型的R2p和RMSEP分别为0.997 6和0.062 3。RFR回归模型R2p和RMSEP分别为0.999 9和0.003 0,PLS回归模型的R2p和RMSEP分别为0.997 6和0.062 2。RFR模型在三种回归预测模型中表现最好。研究结果表明PLS-ACO和PLS-ACO-GA这两种方法可以实现光谱数据特征波段选择,高光谱技术可以实现牛奶中脂肪含量的检测,为牛奶脂肪含量检测提供了一种新的、快速无损的方法。  相似文献   

3.
为了实现油菜叶片中叶绿素含量的快速无损检测,开发了手持式多光谱成像系统用于采集油菜叶片在460,520,660,740,840和940 nm 六个波段的光谱图像。将一台能够采集可见光/近红外(380~1 023 nm)512个波段光谱图像但是价格高昂且体积大的室内高光谱成像系统作为参考仪器,将手持式多光谱成像系统作为目标仪器后,采用伪逆法(pseudo-inverse method)求得高光谱成像系统和多光谱成像系统两台仪器之间的转换矩阵F,从而实现6个波段的多光谱图像向512个波段的高光谱图像的重构,提高了手持式设备的光谱分辨率。运用偏最小二乘回归算法(PLSR)建立了重构的光谱与油菜叶片的叶绿素含量之间的关系模型。结果表明,重构的可见光范围内的光谱反射率与叶绿素浓度之间具有很强的相关性,PLSR回归模型建模集的决定系数R2c为0.82,建模集均方根误差RMESC为1.98,预测集的决定系数R2p为0.78,预测集均方根误差RMESP为1.50,RPD为2.14。虽然应用本文开发的手持式成像系统结合PLSR模型实现油菜叶绿素含量快速无损预测的精度低于基于室内高光谱成像系统获得的高光谱图像建立的PLSR模型(R2c,RMESC,R2p,RMESP和RPD分别为0.90,1.41,0.82,1.36和2.37),但是明显优于基于原始多光谱成像系统4个波段(460,520,660和740 nm)反射率建立的PLSR模型得到的结果(R2c,RMESC,R2p,RMESP和RPD分别为0.78,2.06,0.72,1.85和1.88)。表明光谱重构技术可提高多光谱成像预测油菜叶绿素含量的精度,并且与室内高光谱成像系统相比,开发的手持式设备具有体积小、成本低廉和操作简便等优点,可为田间油菜叶片的生理状态和养分检测及可视化表达提供技术支持。  相似文献   

4.
在水果的品质检测和分级分选中,存在不同仪器所建检测模型难以共享的难题。为此,以壶瓶枣为研究对象,利用可见/近红外光谱技术探讨仪器间可溶性固形物含量(SSC)检测模型的传递方法。首先,采用美国ASD(Analytical Spectral Device)公司生产的两台仪器采集样本的光谱信息,采用最小二乘支持向量机(LS-SVM)建立原始光谱、Savitzky-Golay一阶导数处理、标准正态变量变换后的SSC检测模型,预测不同仪器采集的光谱时3种方法的预测能力均较差。预测同一台仪器的光谱时,基于原始光谱的主仪器所建模型最优,预测集的决定系数(R2p)和均方根误差(RMSEP)分别为0.73和1.36%。在此基础上,采用Kennard/Stone算法选取标样,利用专利算法(Shenk’s)、直接标准化(DS)、斜率/偏差算法(S/B)进行模型传递。然后,根据回归系数提取主仪器(24个)和从仪器(28个)的特征波长,优选出单一变量(SV)24个、共性变量(CV)23个、融合变量(FV)29个,均涵盖了SSC的主要吸收谱带。利用优选的变量分别建立主仪器的LS-SVM检测模型,采用主仪器的预测结果(R2p=0.78~0.80,RMSEP=1.07%~1.13%)明显好于全波段所建模型,但预测从仪器时RMSEP为6.62%~7.88%,模型失效。最后,基于波长位置偏移和分子振动的吸收特性提出了共性变量优选结合差值补正(CV-MC)、单一变量优选结合差值补正、融合变量优选结合差值补正、共性变量优选结合波长补正算法(CV-WC)进行模型传递,并与SV-Shenk’s,CV-Shenk’s,FV-Shenk’s,SV-DS,CV-DS,FV-DS,SV-S/B,CV-S/B和FV-S/B进行对比分析。结果表明,基于全波段进行模型传递时,预测结果均较差(R2p=0.03~0.34,RMSEP=2.44%~4.67%);基于优选变量所建模型经SV-Shenk’s,CV-Shenk’s,FV-Shenk’s传递后的结果较差,经其他算法传递后的结果(R2p=0.47~0.73,RMSEP=1.30%~1.90%)好于全波段;基于共性变量传递后的结果好于单一变量和融合变量,CV-MC结果最佳(R2p=0.73,RMSEP=1.30%),CV-WC传递后的预测结果(RMSEP=1.62%)与CV-DS和CV-S/B相近。研究表明,CV-MC和CV-WC均是一种有效模型传递算法,对建立不同仪器间通用的鲜枣品质检测模型具有重要意义。  相似文献   

5.
海洋沉积物中碳的变化是衔接海洋生态系统的过去与未来的信息桥梁,揭示了海洋生态过程变化规律。因此开展海洋沉积物碳含量的研究,对掌握海洋生态系统碳循环规律,研究全球碳循环,研究对气候变化的响应和反馈有着重要的作用。光谱技术是一种快速、无损的测量方法,在定量分析中已有很成熟的应用。多光谱融合通过将多个光谱数据结合一起,获得比单一光谱更丰富的信息,有利于物质的分析研究。将多光谱融合应用于海洋沉积物碳含量的研究,以青岛海洋潮间161份沉积物为样品,分别采用海洋光学QE65000光谱仪(光谱仪1)和AVANTES光纤光谱仪AvaSpec-ULS2048(光谱仪2)采集沉积物可见-近红外光谱。将两种光谱仪的光谱进行多光谱融合,分别采用偏最小二乘回归算法(PLSR)和BP神经网络算法(BPNN)建立沉积物碳含量模型。在PLSR沉积物碳含量建模结果中,多融合光谱结果优于光谱仪2,略低于光谱仪1,RPD值为1.968;在BPNN沉积物碳含量建模结果中,多融合光谱结果优于两个单光谱仪,RPD值为2.235。将多光谱融合后的光谱划分多个波段,分别建立沉积物碳含量模型,寻找沉积物碳的特征波段。通过分析多光谱融合各波段模型结果,560~790 nm的建模效果最好,R2c为0.949,RMSEC为0.550,R2p为0.874,RMSEP为0.733,RPD值为2.823。预测效果相较于光谱仪1、光谱仪2、多光谱融合全波段都有了显著的提高。因此采用多融合光谱特征波段建立海洋沉积物碳含量模型,能够提高海洋沉积物碳含量的预测结果,建立准确度更高的沉积物碳模型,为沉积物碳的快速测定打下基础。  相似文献   

6.
在利用可见-近红外漫透射光谱技术对苹果的可溶性固形物(SSC)检测时,由于卤素灯光照射在苹果上的位置不同,采集到的苹果光谱中所包含的可溶性固形物信息不同,导致模型得出的结果不同;找到一个最好的苹果光照位置有利于得到最佳的可溶性固形物评价模型。利用多模式可调节的光学结构在相同的实验环境和实验条件下采集了购买于同一水果批发商的尺寸相近但照射位置不同的两批苹果的近红外漫透射光谱,探索苹果可溶性固形物模型建立过程中最佳的照射位置从而得到最佳位置的可溶性固形物评价模型。通过对样品进行光谱采集、糖度真值采集并结合化学计量学方法得出最佳的建模位置,照射位置为上部且光谱没有预处理时的偏最小二乘回归(PLS)模型性能为RMSEC为0.288 2,RMSEP为0.343 6,Rc为0.960 6,Rp为0.934 9;照射位置为斜上部且光谱没有预处理的PLS模型性能为RMSEC为0.340 7,RMSEP为0.513 3,Rc为0.931 1,Rp为0.863 6;照射位置为上部且光谱没有预处理的主成分分析回归(PCR)模型性能为RMSEC为0.573 6,RMSEP为0.601 4,Rc为0.842 4,Rp为0.800 7;照射位置为斜上部且光谱没有预处理的PCR模型性能为RMSEC为0.709 2,RMSEP为0.797 4,Rc为0.701 4,Rp为0.670 7,最佳照射位置为苹果上部;进一步地采用多种预处理方法对照射位置为上部的PLS模型进行对比,得到最优模型为MSC-PLS模型,其RMSEC为0.2264 4,RMSEP为0.301 5,Rc为0.966 9,Rp为0.949 9。最后再对相同的46个苹果进行相同的实验操作得到光谱、真值后,代入到建立的MSC-PLS模型中进行外部验证,结果显示外部验证的相关系数为0.930 58,验证均方根误差为0.843 59,验证了建立的MSC-PLS模型的稳定性和可靠性,进一步表明光谱采集位置为苹果上部时的近红外漫透射模型有很好的预测能力,该研究为预测苹果可溶性固形物的检测提供了技术支持。  相似文献   

7.
生菜叶片绿度在作物生理及品质感官评价中具有重要作用。结合目前高光谱检测与分析技术在植物生理信息监测中的应用现状,开展了基于高光谱技术的生菜叶片绿度判别方法研究,以此为叶菜品质感官评价的定量化及基于高光谱技术的多功能生理信息同步采集装置的开发提供必要的理论支撑。本文以生菜为研究对象,在三种不同光照强度下开展栽培试验。以叶绿素相对含量(SPAD)作为反应绿度的参数,获取生菜整个生命周期中的动态高光谱和SPAD数据,分析了高光谱曲线的变化规律,建立了高光谱与SPAD之间的关系模型。采用Savitzky-Golay卷积平滑(SG)方法对原始高光谱数据进行降噪,平滑后的数据分别与多元散射校正(MSC),标准正态变量变换(SNV)和一阶导数(FD)三种预处理方法组合,采用竞争性自适应重加权取样法(CARS)和提取有效植被指数(VI)两种方法进行敏感波长提取,结合偏最小二乘(PLS)和最小二乘支持向量机(LSSVM)两种方法建模,以决定系数(R2)和均方根误差(RMSE)为评价指标,优选出最优绿度判定模型。结果表明:在10,20和30 d的生菜全生命周期内,不同光照强度下的高光谱曲线表现出总体变化趋势一致但反射率值不同的特征,在可见光450~680nm范围内,自然光照条件下的生菜高光谱反射率值要高于补光处理条件下的反射率值;而在近红外730~850 nm范围内,生菜叶片的高光谱响应特征恰好与可见光范围内相反。基于SG+FD预处理与CARS敏感波长提取方法的组合可实现叶绿素相对含量特征信息的最有效提取,提取的敏感波长占全波长的64.59%,与原始高光谱(1.25%)相比,提取的敏感波长数增加了63.34%。最终确定LSSVM方法为最优建模方法,基于SG+FD+CARS+LSSVM组合方法所建模型为最优生菜绿度判定模型,训练集R2c=0.920 7,RMSEC=1.161 0,预测集R2p=0.828 8,RMSEP=2.400 8,模型精度较高,可以实现生菜叶片绿度判别的目的。  相似文献   

8.
基于冠层光谱的水稻穗颈瘟病害程度预测模型   总被引:2,自引:0,他引:2  
对水稻稻瘟病病害程度的定量预测是精准防控的关键,田间冠层尺度的研究可为高光谱传感器提供理论基础。以受穗颈瘟胁迫的水稻为研究对象,采用SVC HR768i型光谱辐射仪在大田中获取灌浆期两个不同时间段的水稻冠层光谱反射率,以水稻发病株数百分比作为病害严重程度指标。冠层光谱数据采用九点平滑预处理,并重采样为1 nm间隔,计算植被指数;经过去包络线和一阶导数光谱变换,提取高光谱特征参数。分析不同时间段的光谱变换、植被指数、高光谱特征参数与病害程度的相关关系,构建基于植被指数、高光谱特征参数的穗颈瘟病害程度随机森林预测模型,并对比分析两个单时期预测模型异同,优选共用输入量,构建出两时期混合数据的病害程度预测模型。结果表明:(1)原始光谱曲线经去包络线处理可有效增强与病害程度相关的光谱信息,近红外波段(960~1 050和1 150~1 280 nm)的相关系数在0.80以上;(2)高光谱特征参数与病害程度相关性分析中,去包络线吸收谷参数相关系数高于其他参数,吸收谷V3(910~1 100 nm)、吸收谷V4(1 100~1 300 nm)中面积(A3A4)、深度(DP3DP4)、斜率(SL4SR4)的相关系数在0.74以上;(3)去包络线吸收谷参数结合随机森林模型预测穗颈瘟病害程度在单时期及两时期混合数据中均表现最好。灌浆期后期数据预测效果最佳,验证集决定系数R2=0.91,均方根误差RMSE=0.02;(4)两时期混合数据预测精度处于两个单时期预测精度之间,验证集决定系数R2=0.85、均方根误差RMSE=0.03。研究成果揭示了灌浆期不同时间段水稻穗颈瘟光谱响应机制,表明去包络线吸收谷参数结合随机森林模型预测稻瘟病的实用性,可为田间水稻穗颈瘟病害程度进行快速、精确、无损地定量预测,为精准施药提供理论依据,并对未来航空、航天遥感的病害监测提供一定的技术支持。  相似文献   

9.
高光谱成像的猕猴桃糖度无损检测方法   总被引:1,自引:0,他引:1  
猕猴桃糖度是重要的猕猴桃内部品质衡量指标。传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义。基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一算法提取特征光谱变量,而这些算法单独使用易导致预测结果的稳定性不足。对此,开展了基于高光谱成像技术的猕猴桃糖度的无损检测方法研究。以四川省雅安市“红阳”猕猴桃为研究对象,依次对猕猴桃样本编号并采集其在400~1 000 nm波长范围内的高光谱图像,计算感兴趣区域的平均光谱作为样本的有效光谱信息;分别采用多元散射校正(MSC)、标准正态变量变换(SNV)、直接正交信号校正(DOSC)等3种光谱数据预处理方法分析对预测模型精度的影响,对比结果显示DOSC的预处理效果最好;对预处理后的光谱分别采用一次降维(CARS,SPA,IRIV)、一次组合降维(CARS+SPA,CARS+IRIV)算法和二次组合降维算法((CARS+SPA)-SPA,(CARS+IRIV)-SPA))等7种算法提取特征光谱变量,并分别构建了预测猕猴桃糖度的3种模型,即支持向量回归机(SVR)、最小二乘支持向量机(LSSVM)和极限学习机(ELM)模型;最后对比了基于不同特征提取方法的3种模型的预测精度。研究结果表明:ELM模型具有最好的预测性能,而SVR模型的预测性能最差;(CARS+IRIV)-SPA所选特征光谱变量输入LSSVM、ELM模型,其获得的预测结果均优于其他算法所选特征光谱变量输入对应模型所得的预测结果,证明了(CARS+IRIV)-SPA算法在提高猕猴桃糖度含量检测精度方面的有效性。对比不同方法的预测结果可知,(CARS+IRIV)-SPA-ELM对猕猴桃糖度的预测性能最优,其相关系数Rc=0.945 1,Rp=0.839 0,均方根误差RMSEC=0.450 3,RMSEP=0.598 3,预测相对分析误差RPD=2.535 1,该方法为猕猴桃糖度的检测无损化、精准化、智能化发展提供了可靠的理论依据和技术支撑。  相似文献   

10.
虫害胁迫下毛竹叶绿素含量高光谱估算方法   总被引:1,自引:0,他引:1  
叶绿素作为参与植被光合作用最重要的色素,是监测毛竹虫害的一项重要指标。通过对不同光谱数据集进行波长筛选,建立虫害胁迫下竹叶叶绿素含量的高光谱估算模型,为利用高光谱遥感监测毛竹虫害提供理论依据。试验在福建省毛竹生产基地顺昌县进行,使用ASD FieldSpec 3光谱仪采集不同虫害程度竹叶光谱102条,并利用SPAD-502叶绿素计测定相应叶片叶绿素含量。通过对比不同虫害程度竹叶的光谱特征,探测利用高光谱数据估算叶绿素含量的机理。对竹叶原始光谱(OS)进行包络线去除(CR)、一阶导数(FD)、包络线去除一阶导数(CR-FD)变换,分析不同光谱数据与叶绿素含量的相关性,并利用连续投影算法(SPA)分别提取4种光谱的特征波长。采用基于x-y距离结合的样本划分法(SPXY)和随机法对4种光谱数据集进行划分,结合多元逐步回归(MSR)建立竹叶叶绿素含量估算模型,分析光谱变换及样本划分对估算叶绿素含量的影响。结果表明,不同虫害程度竹叶光谱反射率差异明显,主要表现为可见光波段范围内的"绿峰"和"红谷"的逐渐消失,"红边"斜率减小,近红外波长反射率降低。通过光谱变换可有效提升光谱与叶绿素含量的相关性,其中CR-FD光谱与叶绿素含量在724 nm处的相关系数最大。经连续投影算法提取的不同光谱数据集的特征波长集中分布在绿光、红光、"红边"位置,多个被选择波长位于与叶绿素含量相关性较高的波长区(600~750 nm)。基于SPXY样本划分法建立的MSR模型相比于随机样本划分法能显著提升叶绿素含量的估算精度,其中R~2和RPD平均提高0.1和0.5, RMSE平均降低0.7。以CR-FD光谱特征波长结合SPXY样本划分法建立的多元逐步回归模型对竹叶叶绿素含量的估算精度最高,R~2, RMSE和RPD分别为0.835, 2.604和2.364,可对虫害胁迫下毛竹叶片叶绿素含量进行准确的估算。  相似文献   

11.
土壤水分对近红外光谱实时检测土壤全氮的影响研究   总被引:4,自引:0,他引:4  
利用近红外光谱技术实时预测土壤全氮含量是精细农业的研究热点之一,但是由于土壤水分在近红外波段的吸收系数较高,影响了土壤全氮含量的实时预测精度。使用布鲁克MATRIX_I傅里叶近红外光谱分析仪对不同土壤水分的土壤样本进行了近红外光谱扫描,定性和定量的分析了土壤水分对近红外光谱的影响,并提出了一种消除土壤水分对土壤全氮含量预测影响的方法。近红外光谱扫描结果显示在同一全氮含量水平下,随着土壤水分含量的增加,光谱吸光度呈逐渐上升的趋势,且变化趋势为非线性。通过对1 450和1 940 nm两个水分吸收波段的差分处理,设计了水分吸收指数MAI(moisture absorbance index),再对土壤按照水分含量梯度进行分类,提出了相应的修正系数。修正后的6个土壤全氮特征波段处(940,1 050,1 100,1 200,1 300和1 550 nm)的土壤吸光度值作为建模自变量,使用BP神经网络建立了土壤全氮预测模型,模型的RC,RV,RMSEC,RMSEP和RPD分别达到了0.86,0.81,0.06,0.05和2.75;与原始吸光度所建模型相比较模型精度得到了显著提高。实验结果表明本方法可以有效地消除土壤水分对近红外光谱检测土壤全氮含量预测的影响,为土壤全氮含量实时预测提供了理论和技术支持。  相似文献   

12.
近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定   总被引:3,自引:0,他引:3  
高光谱数据量大、 维数高且原始光谱噪声明显、 散射严重等特征导致光谱建模时关键波长变量提取困难。 基于此,提出采用竞争性自适应重加权算法(CARS)对近红外高光谱数据进行关键变量选择。 鸭梨作为研究对象。 采用决定系数r2、 预测均方根误差RMSEP和验证集标准偏差和预测集标准偏差的比值RPD值进行模型性能评估。 基于选择的关键变量建立PLS模型(CARS-PLS)与全光谱变量建立的PLS模型进行比较发现CARS-PLS模型仅仅使用原始变量中15.6%的信息获得了比全变量PLS模型更好的鸭梨SSC含量预测结果,r2pre,RMSEP和RPD分别为0.908 2,0.312 0和3.300 5。 进一步与基于蒙特卡罗无信息变量MC-UVE和遗传算法(GA)获得的特征变量建立的PLS模型比较发现,CARS不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,该方法能够有效地用于高光谱数据变量的选择。 结果表明,近红外高光谱技术结合CARS-PLS模型能够用于鸭梨可溶性固形物SSC含量的定量预测。 从而为基于近红外高光谱技术预测水果内部品质的研究提供了参考。  相似文献   

13.
无人机高光谱遥感为精准农业和农业信息化监测提供崭新视角。高光谱传感器具有厘米级空间分辨率和精细的光谱分辨率,可获取高质量的高光谱数据。然而,高光谱数据通常伴随噪声和数据冗余,高光谱信息利用效率低,常规预处理难以满足精准估算的需求。因此,为解决上述现实问题,针对机载高光谱影像的数据挖掘必不可少。利用分数阶微分(FOD)技术逐像元处理机载高光谱数据(步长为0.1)。通过对比FOD技术与整数阶技术对高光谱数据的改善能力,从光谱层面探寻最佳FOD阶数。在梯度提升回归树(GBRT)算法下构建土壤含水量(SMC)估算模型,最终在最佳模型下评估SMC的空间分布。结果表明:FOD技术提高光谱与SMC的相关系数(rmax=0.768),与原始光谱、一阶微分和二阶微分处理后的光谱同SMC相关系数相比,分别提升0.168,0.157和0.158。FOD技术提升模型估算精度的主因是突出有效光谱信息的作用,特别是与水分胁迫密切敏感的叶绿素、植物结构和水分响应波段(430,460,640,660和970nm)。即使FOD技术取得理想的结果,不同阶数的效果仍有差异。高阶FOD对影像增加了一定噪...  相似文献   

14.
为了实现库尔勒香梨依据可溶性固体含量(SSC)分级定等和按质论价,推动采后处理向标准化、产业化方向健康发展,利用高光谱成像技术研究出了一种快速、有效、无损检测库尔勒香梨SSC的方法。以表面无损伤的157个库尔勒香梨作为研究样本,应用高光谱成像采集系统获取400~1 000 nm波长范围内高光谱图像并用ENVI5.3软件提取感兴趣区域(ROI),获得高光谱数据。采用Kennard-Stone(KS)样本集划分方法将全部样本按照2∶1的比例划分为校正集(105)和预测集(52)。对比标准变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)和二阶导数(SD)等数据预处理方法对建模精度的影响,最终选用SNV方法对光谱曲线进行平滑去噪。该研究提出竞争性自适应重加权算法与平均影响值算法的组合算法(CARS-MIV)选择特征波长。在竞争性自适应重加权算法(CARS)方法中,建模样本由蒙特卡罗算法随机选择生成,变量回归系数会随之发生变化,因而回归系数的绝对值不能全面反映变量重要性,从而影响模型检测精度。为降低这种影响,应用平均影响值(MIV)算法对选出的自变量进行二次筛选,筛选出相关性较大的变量用以建模分析,并与CARS、连续投影算法(SPA)、蒙特卡罗无信息变量消除算法(MCUVE)等经典特征波长选择算法进行比较。最后分别以全波长(FS)光谱信息和四种特征波长选择方法得出的光谱信息作为输入矢量,应用支持向量回归(SVR)建立库尔勒香梨可溶性固体含量定量预测数学模型,以校正集相关系数(Rc)、校正集均方根误差(RMSEC)、预测集相关系数(Rp)和预测集均方根误差(RMSEP)四个参数来评估模型的预测精度。比较分析发现,CARS-MIV-SVR模型效果最佳,校正集相关系数(Rc)为0.985 94,预测集相关系数(Rp)达到0.946 31,校正集和预测集均方根误差分别为0.185 85和0.403 33。结果证明:CARS-MIV特征波长选择方法能够有效增强库尔勒香梨光谱数据特征波长选择的稳定性和精确性,提高模型的预测精度。利用高光谱技术结合CARS-MIV-SVR模型能够满足库尔勒香梨可溶性固体含量测定需求,实现库尔勒香梨的分级定等和按质论价。  相似文献   

15.
由于高光谱数据量大、维数高,光谱噪声明显、散射严重等特征导致光谱建模时关键变量提取较为困难,同时,高光谱图像的获取会受非单色光、杂散光、温度等多种因素的影响,从而使高光谱数据与待测性质之间有一定非线性关系。为此,提出采用正自适应加权算法(CARS)对可见-近红外高光谱高维数据进行关键变量筛选,并与全光谱和经典变量提取方法SPA,MC-UVE,GA和GA-SPA方法进行比较。以200个库尔勒香梨为研究对象,采用SPXY方法将样本划分为校正集和预测集,校正集和预测集分别包含150个和50个样本。基于不同方法筛选的变量,分别建立线性PLS模型及非线性LS-SVM模型,r2,RMSEP和RPD用于模型性能的评估。综合比较发现,GA,GA-SPA和CARS变量筛选方法能够有效地筛选出原始高光谱数据中具有强信息且对外界影响因素不敏感的变量,适用于高光谱数据关键变量的提取,其中CARS变量筛选效果最佳,基于CARS获取的关键变量构建的非线性LS-SVM库尔勒香梨SSC含量预测模型获得了最优的预测结果,r2pre,RMSEP和RPD分别为0.851 2,0.291 3和2.592 4。研究表明,CARS方法是一种有效的高光谱关键变量筛选方法,利用高光谱数据,非线性LS-SVM模型比线性PLS模型更适合于香梨品质的定量预测。  相似文献   

16.
基于变量优选和ELM算法的土壤含水量预测研究   总被引:5,自引:0,他引:5  
土壤水分含量(SMC)的快速估测对干旱半干旱地区的精准农业发展具有重要的意义。以渭干河-库车河绿洲为靶区,采用小波变换(WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(CRAS)、连续投影算法(SPA)和CARS-SPA耦合算法进行特征波长筛选。基于全波段构建BP神经网络模型和基于特征波长构建BP神经网络、支持向量机、随机森林和极限学习机模型,并进行对比分析。结果显示: (1)随着小波分解的进行,总体上L6在去噪的同时还尽可能的保留了光谱原始特征,为最大分解层;(2)小波变换和CARS-SPA算法的结合使其在建立模型时较为彻底的去除噪声和无信息变量,同时消除变量间的共线性; (3)在所有的SMC预测模型中,相对于BP神经网络、SVM,ELM和RF具有更好的预测能力,其中L6-CARS-SPA-ELM精度最高,其RMSEC=0.015 1,R2c=0.916 6,RMSEP=0.014 2,R2p=0.935 4,RPD=2.323 9。这体现出ELM预测模型对非线性问题的强解析能力和模型的稳健性,为该研究区SMC的预测提供新的思路。  相似文献   

17.
不同粒径对土壤有机质含量可见—近红外光谱预测的影响   总被引:1,自引:0,他引:1  
土壤有机质(SOM)是表征土壤肥力的重要指标,实现其快速准确检测可为精准农业区域管理提供有效的数据支撑。土壤粒径对SOM 的光谱预测及仪器开发有很大的影响,为了明确不同粒径对 SOM 预测的影响,分别制备了1~2,0.5~1,0.25~0.5,0.1~0.25和<0.1mm 五种均匀粒径及<1mm 混合粒径共计6种粒径土样并进行了可见-近红外(300~2 500nm)光谱数据采集。采用蒙特卡罗交叉验证分别剔除了不同粒径的异常样本,结合Savitzky-Golay卷积平滑法对光谱数据进行平滑去噪处理,比较了不同粒径样品的光谱反射率差异,并对平滑后的原始光谱 R进行倒数IR、对数 LR、一阶导数 FDR等3种光谱变换并分析与SOM 含量的相关性,基于竞争性自适应重加权算法(CARS)对光谱数据进行了特征波长提取,并结合偏最小二乘回归(PLSR)分别建立了相应的SOM 含量预测模型。结果表明,不同粒径土样的平均光谱反射率与变异系数随着粒径的减小逐渐增加,且在大于540nm 波长范围内,差异明显。随着粒径的减小,SOM含量与光谱反射率在全波段范围的相关性变化幅度愈加明显,FDR 变...  相似文献   

18.
甘草酸(GA)和甘草苷(LQ)是甘草的两个主要的活性成分, 常用作评估甘草的质量主要指标。首次尝试应用实测甘草冠层的可见-短波红外(Vis-SWIR)高光谱数据定量估算甘草中的GA和LQ含量,利用高效液相色谱方法(HPLC)分别测定甘草中GA和LQ含量作为参考值,通过结合一阶导数预处理和运用Wilk’lambda 逐步回归法选择特征波长等光谱预处理方法,在选择9个最优波段基础上建立偏最小二乘(PLS)回归预测模型,甘草GA和LQ的回归精度R2分别为0.953和0.932,校正集的均方根误差(RMSEC)分别为0.31和0.22, 预测精度R2分别为0.875和0.883,验证集的均方根误差(RMSEP)分别为0.39和0.27。结果显示,用光谱预测模型获得甘草GA和LQ含量预测与HPLC方法获得的甘草GA和LQ含量实测之间具有较高的相关性,说明Vis-SWIR技术从遥感数据中来确定GA和LQ含量的可行性。为野外利用外机载和/或星载高光谱传感器对甘草质量遥感监测提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号