首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
Two new macrocyclic ligands, 6,6′-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(–1).  相似文献   

2.
Ligand L, based on two do3a moieties linked by the methylene groups of 6,6'-dimethyl-2,2'-bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01?M Tris-HCl, pH?7.4) led to the successive formation of [LnL] and [Ln(2)L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln(2)L] complexes (Ln = Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The (1)H and (13)C?NMR spectra of the Lu and Yb complexes in D(2)O solution (pD = 7.0) showed C(1) symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb(2)L] complex upon ligand excitation revealed conventional behavior with τ(H2O) = 2.05(1)?ms and ?(H2O) = 51%, except for the calculation of the hydration number obtained from the luminescent lifetimes in H(2)O and D(2)O, which pointed to a non-integer value of 0.6 water molecules per Tb(III) ion. In contrast, the Eu complex revealed surprising features such as: 1)?the presence of two and up to five components in the (5)D(0)→(7)F(0) and (5)D(0)→(7)F(1) emission bands, respectively; 2)?marked differences between the normalized spectra obtained in H(2)O and D(2)O solutions; and 3)?unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd(2-x)Eu(x)L] complexes (x = 0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu-to-Eu energy-transfer process. A mathematical model was developed to interpret the experimental data, leading to energy-transfer rates of 0.98?ms(-1) for the transfer from the site with q=0 to that with q=2 and vice versa. Hartree-Fock (HF) and density functional theory (DFT) calculations performed at the B3LYP level were used to investigate the conformation of the complex in solution, and to estimate the intermetallic distance, which provided F?rster radii (R(0)) values of 8.1?? for the energy transfer from site I to site II, and 6.8?? for the reverse energy transfer. These results represent the first evidence of an intramolecular energy-transfer equilibrium between two identical lanthanide cations within a discrete molecular complex in solution.  相似文献   

3.
The synthesis of a new ligand (1) containing a single phenanthroline (phen) chromophore and a flexibly connected diethylenetriamine tetracarboxylic acid unit (DTTA) as a lanthanide (Ln) coordination site is reported [1 is 4-[(9-methyl-1,10-phenantrol-2-yl)methyl]-1,4,7-triazaheptane-1,1,7,7-tetraacetic acid]. From 1, an extended series of water-soluble Ln.1 complexes was obtained, where Ln is Eu(III), Tb(III), Gd(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III). The stoichiometry for the association was found 1:1, with an association constant K(A) > or = 10(7) s(-1) as determined by employing luminescence spectroscopy. The luminescence and photophysical properties of the series of lanthanide complexes were investigated in both H2O and D2O solutions. High efficiencies for the sensitized emission, phi(se), in air-equilibrated water were observed for the Ln.1 complexes of Eu(III) and Tb(III) in the visible region (phi(se) = 0.24 and 0.15, respectively) and of Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III) in the vis and/or near-infrared region [phi(se) = 2.5 x 10(-3), 5 x 10(-4), 3 x 10(-5), 2 x 10(-5), 2 x 10(-4), 4 x 10(-5), and (in D2O) 4 x 10(-5), respectively]. For Eu.1 and Tb.1, luminescence data for water and deuterated water allowed us to estimate that no solvent molecules (q) are bound to the ion centers (q = 0). Luminescence quenching by oxygen was investigated in selected cases.  相似文献   

4.
Complexes between the tetrapyridyl pendant-armed macrocyclic ligand (L) and the trivalent lanthanide ions have been synthesized, and structural studies have been made both in the solid state and in aqueous solution. The crystal structures of the La, Ce, Pr, Gd, Tb, Er, and Tm complexes have been determined by single-crystal X-ray crystallography. In the solid state, all the cation complexes show a 10-coordinated geometry close to a distorted bicapped antiprism, with the pyridine pendants situated alternatively above and below the main plane of the macrocycle. The conformations of the two five-membered chelate rings present in the complexes change along the lanthanide series. The La(III) and Ce(III) complexes show a lambdadelta (or deltalambda) conformation, while the complexes of the heavier lanthanide ions present lambdalambda (or deltadelta) conformation. The cationic [Ln(L)]3+ complexes (Ln = La, Pr, Eu, Tb, and Tm) were also characterized by theoretical calculations at the density-functional theory (DFT) B3LYP level. The theoretical calculations predict a stabilization of the lambdalambda (or deltadelta) conformation on decreasing the ionic radius of the Ln(III) ion, in agreement with the experimental evidence. The solution structures show a good agreement with the calculated ones, as demonstrated by paramagnetic NMR measurements (lanthanide induced shifts and relaxation rate enhancements). The 1H NMR spectra indicate an effective D2 symmetry of the complexes in D2O solution. The 1H lanthanide induced shifts (LIS) observed for the Ce(III), Tm(III), and Yb(III) complexes can be fit to a theoretical model assuming that dipolar contributions are dominant for all protons. The resulting calculated values are consistent with highly rhombic magnetic susceptibility tensors with the magnetic axes being coincident with the symmetry axes of the molecule. In contrast with the solid-state structure, the analysis of the LIS data indicates that the Ce(III) complexes present a lambdalambda (or deltadelta) conformation in solution.  相似文献   

5.
The syntheses of a new cyclen-based ligand L(2) containing four N-[2-(2-hydroxyethoxy)ethyl]acetamide pendant arms and of its lanthanide(III) complexes [LnL(2)(H(2)O)]Cl(3) (Ln = La, Eu, Tb, Yb, or Lu) are reported, together with a comparison with some Ln(III) complexes of a previously reported analogue L(1) in which two opposite amide arms have been replaced by coordinating pyridyl units. The structure and dynamics of the La(III), Lu(III), and Yb(III) complexes in solution were studied by using multinuclear NMR investigations and density functional theory calculations. Luminescence lifetime measurements in H(2)O and D(2)O solutions of the [Ln(L(2))(H(2)O)](3+) complexes (Ln = Eu or Tb) were used to investigate the number of H(2)O molecules coordinated to the metal ion, pointing to the presence of an inner-sphere H(2)O molecule in a buffered aqueous solution. Fluoride binding to the latter complexes was investigated using a combination of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy, pointing to a surprisingly weak interaction in the case of L(2) (log K = 1.4 ± 0.1). In contrast to the results in solution, the X-ray crystal structure of the lanthanide complex showed the ninth coordination position occupied by a chloride anion. In the case of L(1), the X-ray structure of the [(EuL(1))(2)F] complex features a bridging fluoride donor with an uncommon linear Eu-F-Eu entity connecting two almost identical [Eu(L(1))](3+) units. Encapsulation of the F(-) anion within the two complexes is assisted by π-π stacking between the pyridyl rings of two complexes and C-H···F hydrogen-bonding interactions involving the anion and the pyridyl units.  相似文献   

6.
The reaction of tetrasodium-4,4',6,6'-tetracarboxy-2,2'-bipyridine (Na(4)L) with various lanthanide ions yields a family of isostructural supramolecular {Na(2)[Ln(2)L(2)]} complexes (1-4), where Ln(III) = Eu, Nd, Gd, and Tb. Strikingly, these complexes luminesce in buffered H(2)O or D(2)O solutions in either the visible or near-IR regions, despite their high hydration states.  相似文献   

7.
The coordination properties of the macrocyclic receptor N,N'-bis[(6-carboxy-2-pyridyl)methylene]-1,10-diaza-15-crown-5 (H(2)bp15c5) towards the lanthanide ions are reported. Thermodynamic stability constants were determined by pH-potentiometric titration at 25 °C in 0.1 M KCl. A smooth decrease in complex stability is observed upon decreasing the ionic radius of the Ln(III) ion from La [log K(LaL) = 12.52(2)] to Lu [log K(LuL) = 10.03(6)]. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes confirm the absence of inner-sphere water molecules in these complexes. (1)H and (13)C NMR spectra of the complexes formed with the diamagnetic La(III) metal ion were obtained in D(2)O solution and assigned with the aid of HSQC and HMBC 2D heteronuclear experiments, as well as standard 2D homonuclear COSY and NOESY spectra. The (1)H NMR spectra of the paramagnetic Ce(III), Eu(III) and Yb(III) complex suggest nonadentate binding of the ligand to the metal ion. The syn conformation of the ligand in [Ln(bp15c5)](+) complexes implies the occurrence of two helicities, one associated with the layout of the picolinate pendant arms (absolute configuration Δ or Λ), and the other to the five five-membered chelate rings formed by the binding of the crown moiety (absolute configuration δ or λ). A detailed conformational analysis performed with the aid of DFT calculations (B3LYP model) indicates that the complexes adopt a Λ(λδ)(δδλ) [or Δ(δλ)(λλδ)] conformation in aqueous solution. Our calculations show that the interaction between the Ln(III) ion and several donor atoms of the crown moiety is weakened as the ionic radius of the metal ion decreases, in line with the decrease of complex stability observed on proceeding to the right across the lanthanide series.  相似文献   

8.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

9.
Zhang X  Wang D  Dou J  Yan S  Yao X  Jiang J 《Inorganic chemistry》2006,45(26):10629-10635
A series of 10 novel polyoxometalate (W/Mo) compounds connected via a trivalent lanthanide cation bridge, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}.n(H2O) (Ln = La, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu; M = W or W/Mo) (1-10), were designed and synthesized on the basis of the abduction of Al3+ in aqueous solution. X-ray diffraction analyses reveal that the structures of complexes 1-10 are three-dimensional frameworks assembled from the arrangement of H2M12O42(10-) (named paradodecmetalate-B) and Ln(H2O)53+ with two planes, which are constructed via the unification of H2M12O42(10-) and Ln(H2O)53+, along the [100] and [001] directions. Magnetic measurements reveal the paramagnetic properties and a strong ferromagnetic coupling between the two nearest-neighboring lanthanide cations, Ln3+ (Ln = Dy, Er), within the circle for compounds 2 and 4-9.  相似文献   

10.
A series of new lanthanide hybrids [Ln3(mu-OH)4 (2,5-pydc)(2,5-Hpydc)3(H2O)4]n (Ln = Gd (1), Dy (2), Er (3), Eu (4), Sm (5), Yb (6), Y (7); 2,5-pydc=pyridine-2,5-dicarboxylate), as clustered lanthanide oxide ring tunnels with helical dodecahedral chains and fully 3D Ln-O-Ln connectivity, has been hydrothermally synthesized and characterized. The inorganic skeleton of the hybrid can be specified by the Schl?fli symbol (6210)2 (64102) as a single 3D (3,4)-connected net. The luminescence properties have been studied, and the results showed that the Dy(III) (2) and Eu(III) (4) complexes exhibited sensitized luminescence in the visible region. Variable-temperature magnetic susceptibility measurements of 1-6 showed that the complexes 1-3 are nearly paramagnets, whereas the depopulation of the Stark levels in complexes 4-6 leads to a continuous decrease in mu(eff) when the sample is cooled from 300 to 2 K.  相似文献   

11.
The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall −1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.  相似文献   

12.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

13.
Employment of the artificial amino acid 2-amino-isobutyric acid, aibH, in Cu(II) and Cu(II)/Ln(III) chemistry led to the isolation and characterization of 12 new heterometallic heptanuclear [Cu(6)Ln(aib)(6)(OH)(3)(OAc)(3)(NO(3))(3)] complexes consisting of trivalent lanthanide centers within a hexanuclear copper trigonal prism (aibH = 2-amino-butyric acid; Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), and Yb (12)). Direct curent magnetic susceptibility studies have been carried out in the 5-300 K range for all complexes, revealing the different nature of the magnetic interactions between the 3d-4f metallic pairs: dominant antiferromagnetic interactions for the majority of the pairs and dominant ferromagnetic interactions for when the lanthanide center is Gd(III) and Dy(III). Furthermore, alternating current magnetic susceptibility studies reveal the possibility of single-molecule magnetism behavior for complexes 7 and 8. Finally, complexes 2, 5-8, 10, and 12 were analyzed using positive ion electrospray mass spectrometry (ES-MS), establishing the structural integrity of the heterometallic heptanuclear cage structure in acetonitrile.  相似文献   

14.
A new bifunctional octa-coordinating ligand containing an aminobenzyl moiety, DO3APABn (H4DO3APABn = 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic-1-{methyl[(4-aminophenyl)methyl]phosphinic acid}), has been synthesized. Its lanthanide(III) complexes contain one water molecule in the first coordination sphere. The high-resolution 1H and 31P spectra of [Eu(H2O) (DO3APABn)]- show that the twisted square-antiprismatic form of the complexes is more abundant in respect to the corresponding Eu(III)-DOTA complex. The 1H NMRD and variable-temperature 17O relaxation measurements of [Gd(H2O)(DO3APABn)]- show that the water residence time is short (298tauM = 16 ns) and falls into the optimal range predicted by theory for the attainment of high relaxivities once this complex would be endowed by a slow tumbling rate. The relaxivity (298r1 = 6.7 mM(-1) s(-1) at 10 MHz) is higher than expected as a consequence of a significant contribution from the second hydration sphere. These results prompt the use of [Gd(H2O)(DO3APABn)]- as a building block for the set-up of highly efficient macromolecular MRI contrast agents.  相似文献   

15.
The synthesis, structure, and characterization of a [Yb(Tren-Me-3,2-HOPO)(H 2O) 2] complex are reported. As a result of its Yb (III) emission in the near-infrared region, sensitized by the Me-3,2-HOPO chromophore, this complex can be utilized for the first time to determine the hydration state, q, via the luminescence lifetimes and hence the solution structure of these Me-3,2-HOPO-type ligands, which have attracted significant interest in complex with Gd (III) as possible next-generation magnetic resonance imaging contrast agents.  相似文献   

16.
Reactions of tripodal ligand 1,3,5-tris(imidazole-1-ylmethyl)-2,4,6-trimethylbenzene (L) with lanthanide metal salts and triethyl orthoformate led to the formation of six bowl-like dinuclear compounds [Ln2(L)(HL)(NO3)6(HCOO)].3CH3OH (Ln = Gd 1, Tb 2, Dy 3, Er 4, Yb 5, and Eu 6). The single-crystal X-ray diffraction analysis revealed that six complexes are isomorphous and isostructural and that the dinuclear molecules are further connected by hydrogen bonds and pi-pi interactions, resulting in 3D channel-like structures. The luminescence properties have been studied, and the results showed that the Tb(III) (2) and Eu(III) (6) complexes exhibited sensitized luminescence in the visible region and their luminescence lifetimes in powder and DMSO-d6 solution are in the range of milliseconds. The Yb(III) complex (5) emits typical near-infrared luminescence in DMSO-d6 solution. Variable-temperature magnetic susceptibility measurements of 1-6 showed that complex 1 (Gd) is nearly a paramagnet and complexes 2 (Tb), 3 (Dy), and 4 (Er) show the ferromagnetic coupling between magnetic centers, whereas the depopulation of the Stark levels in complexes 5 (Yb) and 6 (Eu) leads to a continuous decrease in (chi M)T when the sample is cooled from 300 to 1.8 K.  相似文献   

17.
The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III), and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission (Phi tot (Eu) approximately 21.5%) with high stability (pEu approximately 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure and were found to agree with corresponding time-dependent density functional theory (TD-DFT) calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.  相似文献   

18.
Three novel heptacoordinated Ln(III) complexes (Ln = Gd and Yb) have been synthesized and investigated by (1)H NMR spectroscopy. These complexes contain two stereogenic centers, one associated with a deltadeltadeltadelta or lambdalambdalambdalambda conformation of the ethylenediamine moieties in the tetraazamacrocycle and the latter arises from the orientation (Delta or Lambda) of the coordinating arms. Evidence has been gained for the occurrence of a fast exchange between all the possible conformers. Upon addition of several (S)-alpha-hydroxy-carboxylate substrates, the formation of stable ternary adducts has been obtained. Their (1)H NMR spectra are consistent with the presence of two diastereoisomers differing in the conformation adopted by the macrocyclic ligand wrapping the lanthanide(III) ion. The interaction leading to the formation of the ternary complexes is enantioselective depending on the hydrophilicity of the alpha-hydroxy-carboxylate.  相似文献   

19.
Detailed analyses of the solution structure and exchange dynamics of two sets of homologous mono-amide triacetate lanthanide complexes (Ln = Eu, Gd) of cyclen have been undertaken. The complex [LnL1], bearing an N-linked CH2CH2NHCO-pyridyl moiety, forms mono-aqua (q = 1) species in solution and the Gd complex undergoes rapid water exchange (k(ex)= 11 x 10(7) s(-1), 298 K) as a result of the steric destabilisation of the Ln-water binding interaction. The homologous complex with a C-3 spacing chain, [LnL2], forms a q = 0 species.  相似文献   

20.
The reactivity of the [alpha-SiW(11)O(39)](8-) monovacant polyoxometalate with lanthanide has been investigated for four different trivalent rare-earth cations (Ln = Nd(III), Eu(III), Gd(III), Yb(III)). The crystal structures of KCs(4)[Yb(alpha-SiW(11)O(39))(H(2)O)(2)] x 24H(2)O (1), K(0.5)Nd(0.5)[Nd(2)(alpha-SiW(11)O(39))(H(2)O)(11)] x 17H(2)O (2a), and Na(0.5)Cs(4.5)[Eu(alpha-SiW(11)O(39))(H(2)O)(2)] x 23H(2)O (3a) are reported. The solid-state structure of compound 1 consists of linear wires built up of [alpha-SiW(11)O(39)](8-) anions connected by Yb(3+) cations, while the linkage of the building blocks by Eu(3+) centers in 3a leads to the formation of zigzag chains. In 2a, dimeric [Nd(2)(alpha-SiW(11)O(39))(2)(H(2)O)(8)](10-) entities are linked by four Nd(3+) cations. The resulting chains are connected by lanthanide ions, leading to a bidimensional arrangement. Thus, the dimensionality, the organization of the polyoxometalate building units, and the Ln/[alpha-SiW(11)O(39)](8-) ratio in the solid state can be tuned by choosing the appropriate lanthanide. The luminescent properties of compound 3a have been studied, showing that, in solution, the polymer decomposes to give the monomeric complex [Eu(alpha-SiW(11)O(39))(H(2)O)(4)](5-). The lability of the four exogenous ligands connected to the rare earth must allow the functionalization of this lanthanide polyanion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号