首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 762 毫秒
1.
 Fluoropolymer blends have been widely used as binders for exterior coatings because of their excellent resistance to ultra-violet (UV) radiation as well as to many corrosive chemical agents. It is known that the fluorinated component usually has a lower glass transition temperature and easily crystallizes in the final structure depending upon the blend composition and sample annealing condition. We investigated the effect of blend composition and annealing process (slow and fast cooling) on the surface morphology and microstructure a poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blend before and after UV exposure. Surface and subsurface microstructures were studied by atomic force microscopy (AFM) and laser scanning confocal microscopy (LSCM). Bulk microstructure of PVDF-coatings before and after UV exposure were characterized using small angle neutron and light scattering. Higher PVDF content and a slow cooling process result in larger spherulite crystallite structure and rougher surface morphology. Significant ordering in the spherulite crystallite structure has been observed on the surface and the bulk films after UV exposure.  相似文献   

2.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

3.
To endow hydrophobic poly(vinylidene fluoride) (PVDF) membranes with reliable hydrophilicity and protein resistance, an amphiphilic hyperbranched-star polymer (HPE-g-MPEG) with about 12 hydrophilic arms in each molecule was synthesized by grafting methoxy poly(ethylene glycol) (MPEG) to the hyperbranched polyester (HPE) molecule using terephthaloyl chloride (TPC) as the coupling agent and blended with PVDF to fabricate porous membranes via phase inversion process. The chemical composition changes of the membrane surface were confirmed by X-ray photoelectron spectroscopy (XPS), and the membrane morphologies were measured by scanning electron microscopy (SEM). Water contact angle, static protein adsorption, and filtration experiments were used to evaluate the hydrophilicity and anti-fouling properties of the membranes. It was found that MPEG segments of HPE-g-MPEG enriched at the membrane surface substantially, while the water contact angle decreased as low as 49 degrees for the membrane with a HPE-g-MPEG/PVDF ratio of 3/10. More importantly, the water contact angle of the blend membrane changed little after being leached continuously in water at 60 degrees C for 30 days, indicating a quite stable presence of HPE-g-MPEG in the blend membranes. Furthermore, the blend membranes showed lower static protein adsorption, higher water and protein solution fluxes, and better water flux recovery after cleaning than the pure PVDF membrane.  相似文献   

4.
Composition profiles develop around growing PVDF spherulites in a blend with PMMA. These profiles assume stationary courses after a certain crystallization time provided that the overall degree of crystallinity is not too high. The composition-dependent growth rate and the diffusion-controlled remove of the surplus PMMA from the spherulite surface are then in a stationary equilibrium. The internal structure of the spherulites will then be homogeneous, too. Upon isothermal crystallization of a PVDF/PMMA = 60/40 (wt %) blend at 160°C for at least 4 h, the spherulites internal degree of crystallinity xc as related to the PVDF fraction obeys the inequality 55 wt % ≤ xc ≤ 84 wt %. The overall PMMA content within the spherulites as averaged over its whole inside has been determined by IR microscopy. It amounts to about 15 wt %. In contrast, the PMMA content of the amorphous phase within the spherulites (averaged again over its whole inside) ranges between 28 and 52 wt %. This composition jumps at the spherulite surface to 52 wt %. From the slope of the composition profiles outside the spherulites that have a width of more than 50 μm, the effective chain diffusion coefficient in blends as averaged over both components can be calculated to amount to (250 ± 100) μm2h−1. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2923–2930, 1998  相似文献   

5.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   

6.
PTT/PET共混体系晶体形态与结晶性能的研究   总被引:1,自引:0,他引:1  
用差示扫描量热仪(DSC)、广角X射线衍射(WAXD)和正交偏光显微镜研究了聚对苯二甲酸丙二酯(PTT)和聚对苯二甲酸乙二酯(PET)共混体系的晶体形态与结晶性能.结果表明,共混体系结晶性能与PTT的含量有关.PET的加入,使共混体系的球晶尺寸减小.球晶完善性降低.当PTT含量为40wt%~60wt%时,共混物分别出现了双重熔融峰和双重结晶峰.双重熔融峰是加热过程中熔融重结晶造成的,双重结晶峰说明不完善的晶体产生的次级结晶.  相似文献   

7.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

8.
宋锐 《高分子科学》2006,(5):515-528
Thin films of incompatible polymer blends can form a variety of structures during preparation and subsequent annealing process. For the polymer blend system consisting of polystyrene and poIy(styrene-co-p-bromo-styrene), i.e., PS/PBrxS, its compatibility could be adjusted by varying the degree of bromination and the molecular weight of both components comprised, in this paper, surface chemical compositions of the cast and the annealing films were investigated by X-ray photoelectron spectroscopy (XPS) and contact angle measurement; meanwhile, surface topographical changes are followed by atomic force microscopy (AFM). In addition, substantial attention was paid to the effect of annealing on the morphologic variations induced by phase separation and/or dewetting of the thin film. Moreover, the influences of the molecular weight, Aw, as well as the brominated degree, x%, on the sample surface are explored systematically, and the corresponding observations are explained in virtue of the Flory-Huggins theory, along with the dewetting of the polymer thin film.  相似文献   

9.
Poly(vinylidene fluoride) (PVDF) blend microporous membranes were prepared by PVDF/poly(methyl methacrylate) blend (with mass ratio = 70/30) via thermally induced phase separation. Benzophenone (BP) and methyl salicylate (MS) were used as diluents. The phase diagram calculations were carried out in terms of a pseudobinary system, considering the PVDF blend to be one component. The crytallization behaviors of PVDF in the dilutions were detected by differential scanning calorimetry measurement. In these two systems, the melting and crystallization temperatures leveled off in the low polymer concentration (<40 wt %), but shifted to a higher temperature when the polymer concentration >40 wt %. The calculated crystallinity of PVDF for samples with low polymer concentrations was greater than those with high polymer concentrations, because of the limited mobility of polymer chains at a high polymer concentration. The membrane structure as determined by scanning electron microscopy depended on the phase separation mechanism. The quenched samples mainly illustrated the occurrence of crystallization on the same time scale as the liquid–liquid phase separated, resulting in the obvious spherulitic structure with small pores in the spherulites. As the polymer concentration increased, the size of the spherulites and pores within the spherulite was decreased. The evaluated porosity for BP diluted system was higher than that for MS diluted system, and decreased with the increased polymer concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 248–260, 2009  相似文献   

10.
Superhydrophilic organic/inorganic hybrid surfaces have been fabricated on blend membranes of poly(vinylidene fluoride) (PVDF) and poly(styrene-alt-maleic anhydride) (SMA). The blend membranes were prepared from PVDF/SMA mixed solution with N,N-dimethylacetamide (DMAc) as solvent by immersion-precipitation phase inversion process. The gained blend membranes were immersed into γ-aminopropyltriethoxysilane (APTS) solution to generate SMA/silica hybrid surfaces by the reaction between anhydrides and APTS. The hybrid surfaces chemical compositions, morphologies and hydrophilicity were investigated in detail. It demonstrates that the hybrid surfaces possess micro-nano hierarchical structure and display superhydrophilicity property and good stability. Finally, the reaction and formation mechanism of the superhydrophilicity hybrid surface was discussed.  相似文献   

11.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
应用偏光显微镜、扫描电子显微镜及蚀刻的方法,研究了聚苯硫醚及其与聚砜共混物的结晶形态与织构。结果表明,经固相空气热处理的聚苯硫醚,其本体与表面区域的结晶形态有显著的不同;蚀刻择优发生于球晶的晶界上;随着聚砜组份的增加,共混物的织构从聚苯硫醚为连续相逐渐转变为聚砜为连续相,聚苯硫醚的球晶形态也逐渐变得不规整。  相似文献   

13.
使用红外光谱和偏光显微镜对PVDF(聚偏氟乙烯)-DMF(N,N-二甲基甲酰胺)和PVDF-DMAc(N,N-二甲基乙酰胺)体系结晶行为的研究表明,PVDF薄膜的结晶受制备溶剂,后期热处理温度和膜厚度等因素的影响;升高温度,β相含量减小;当温度低于90℃时,PVDF-DMF体系的F(β)值较DMAc体系大,在90~160℃之间则相反,且两种体系的F(β)值分别在约90℃和80℃发生“突变”;同时,结晶还明显受到薄膜厚度的影响,厚度大,结晶较完善.  相似文献   

14.
The effect of annealing 50 μm thick, extruded poly(vinylidene fluoride) films in form (-PVDF) was investigated by differential scanning calorimetry and mechanical testing on unnotched and double-edge notched tensile specimens. As to the fracture behavior, micromechanisms of cavitation, spherulite breakdown, fiber bundle structure formation and - to β-phase transformation were detected. The progressive structural evolution taking place during annealing affected the deformation and fracture behavior significantly. While the annealing-induced subtle distinctions in microstructure are slightly reflected by the determined mechanical and essential work of fracture (EWF) properties, a distinct differentiation was possible by analysis of the process zone. A correlation between characteristic values of the process zone at necking and the endothermic transitions due to secondary crystallization determined by differential scanning calorimetry (DSC) was established. Annealing of PVDF films facilitates the micromechanism of cavitation, which is presumably related to perfection of morphological superstructures (spherulites) and, thus, interspherulitic stress concentration and failure.  相似文献   

15.
Compatibilization of the partially miscible poly(vinylidene fluoride) (PVDF)/poly(styrene-co-acrylonitrile) (SAN) pair by a third homopolymer, i.e., poly(methyl methacrylate) (PMMA), was investigated in relation to cross section morphology, crystallization behaviors and hydrophilicity of the polyblends. Scanning electron microscopy showed a more regular and homogeneous morphology when more than 15 wt.% PMMA was incorporated. The samples presented only α phase regardless of PMMA content in the blend. As the PMMA content increased in the blends, the interactions between each component were enhanced, and the crystallization of PVDF was limited, leading to a decreasing of the crystallinity and the crystallite thickness. Besides, the hydrophilicity of PVDF was further improved by PMMA addition. The sample containing 15 wt.% PMMA showed a more hydrophilic property due to the more polar part of surface tension induced by PMMA addition. Observed from the cross section of the blends, the miscibility of partially miscible PVDF/SAN blends were efficiently improved by PMMA incorporation.  相似文献   

16.
Real‐time small‐angle X‐ray scattering (SAXS) measurement using synchrotron radiation was applied to study the lamellar structural changes in miscible crystalline polymer blends of poly(1,4‐butylene succinate) (PBSU) and poly(vinylidene fluoride) (PVDF) during melting and crystallization processes. The lamella of PBSU is either included in the interlamellar region of PVDF (interlamellar inclusion structure), or rejected from the interlamellar region of PVDF (interlamellar exclusion structure). The two lamellar structures coexists in the melt‐quenched samples of the PBSU/PVDF = 30/70 blend. Only the interlamellar exclusion structure exists in the drawn films of the PBSU/PVDF = 30/70 blend. The real‐time SAXS results show that the interlamellar exclusion structure in these samples is irreversibly transformed into the interlamellar inclusion structure by heating the sample above the melting temperature of PBSU and that the PBSU chains are crystallized between the lamellae of PVDF during the cooling process. The factors controlling the lamellar structural changes are possibly a balance of the miscibility and the chain exclusion by tie‐molecules and/or the chain diffusion under confinement by the lamellae of PVDF with higher melting temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1959–1969, 2007  相似文献   

17.
聚苯硫醚及其聚醚砜共混物结晶形态的研究   总被引:4,自引:0,他引:4  
本文借用偏光显微镜(PLM)、扫描电子显微镜(SEM)、小角激光光散射仪(SALS)及蚀刻的方法,研完了聚苯硫醚及其与聚醚砜共混物的结晶形态和织构,讨论了共混方法及其共混组成对其共混物的结晶形态的影响。结果表明,聚苯硫醚在应力作用下能生成横晶;溶液共混物和粉末机械共混物呈现不同的共混结晶形态;随着聚醚砜组分的增加,共混物的织构从聚苯硫醚为连续相逐渐转变为聚醚砜为连续相,同时,聚醚砜的聚集区域从分散在聚苯硫醚的球晶之间转变为聚集在聚苯硫醚的球晶内,使聚苯硫醚的球晶形态逐渐变得不规整。  相似文献   

18.
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.  相似文献   

19.
The new biodegradable blends composed of natural pectin and synthetic polymer: polyvinylpyrrolidone were obtained by casting from aqueous solutions. The molecular interactions between components have been studied by FTIR. The blends were exposed to UV-irradiation and the changes in chemical structure were investigated using absorption spectroscopy (FTIR and UV-Vis). The morphology of sample surfaces before and after exposure to UV was observed by atomic force microscopy. Insoluble gel, formed as a result of photocrosslinking, was appointed gravimetrically. The relation between the blend composition and the efficiency of observed photoreactions has been considered.  相似文献   

20.
应用X射线衍射、偏光显微镜及电子显微镜研究了胆甾液晶与甲基丙烯酸甲酯(MMA)─甲基丙烯酸丁酯(BMA)无规共聚物共混体系的形态结构。研究了体系的结晶态及液晶态的行为和共聚物含量及组成对光学织构的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号