首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep blue luminescent materials play a crucial role in the organic light-emitting diodes (OLEDs). In this work, a novel deep blue molecule based on hybridized local and charge-transfer (HLCT) excited state was reported with the emission wavelength of 423 nm. The OLED based on this material achieved high maximum external quantum efficiency (EQE) of 4% with good color purity. The results revealed that the locally-excited (LE)-dominated HLCT excited state had obvious advantages in short wavelength and narrow spectrum emission. What is more, the experimental and theoretical combination was used to describe the excited state characteristic and to understand photophysical property.  相似文献   

2.
High-performance deep-blue emitters with external quantum efficiencies (EQEs) exceeding 5 % are still scarce in organic light-emitting diodes (OLEDs). In this work, by introducing a [1,2,4]triazolo[1,5-a] pyridine (TP) unit at the N1 position of phenanthroimidazole (PI), two luminescent materials, PTPTPA and PTPTPA , were obtained. Systematic photophysical analysis showed that the TP block is suitable for constructing hybridized local and charge-transfer (HLCT) emitters. Its moderate electron-withdrawing ability and rigid planar structure can enhance the CT component while ensuring color purity. In addition, compared with PTPTPA , the additional phenyl ring of PTPBPTA not only increased the oscillator strength, but also decreased the Stokes shift. TDDFT calculations pointed out facile reverse intersystem crossing processes in PTPTPA from high-lying triplet states to the singlet excited state. A nondoped device based on PTPTPA as emitter showed impressive performance with EQEmax of 7.11 % and CIE coordinates of (0.15, 0.09). At the same time, it was also an efficient host for yellow and red phosphorescent OLEDs. By doping yellow (PPYBA) and red (BTPG) phosphorescent dyes into PTPTPA , a white OLED with a high EQE of 23.85 % was achieved. The successful design of PTPTPA not only provided an optimization choice for OLED emitters, but also demonstrated the empirical rules for the design of multifunctional deep-blue emitters.  相似文献   

3.
Organic light-emitting diodes (OLEDs) using conventional fluorescent emitters are currently attracting considerable interests due to outstanding stability and abundant raw materials. To construct high-performance narrowband fluorophores to satisfy requirements of ultra-high-definition displays, a strategy fusing multi-resonance BN-doped moieties to naphthalene is proposed to construct two novel narrowband fluorophores. Green Na−sBN and red Na−dBN, manifest narrow full-width at half-maxima of 31 nm, near-unity photoluminescence quantum yields and molecular horizontal dipole ratios above 90 %. Their OLEDs exhibit the state-of-the-art performances including high external quantum efficiencies (EQE), ultra-low efficiency roll-off and long operational lifetimes. The Na−sBN-based device achieves EQE as high as 28.8 % and remains 19.8 % even at luminance of 100,000 cd m−2, and Na−dBN-based device acquires a record-high EQE of 25.2 % among all red OLEDs using pure fluorescent emitters.  相似文献   

4.
Blue-emissive materials are crucial in organic light emitting diodes (OLED). In this work, we report two highly efficient donor-acceptor materials PPIPO and PPIPOCN. PPIPO is constructed with phenanthroimidazole (PI) and oxadiazole groups, which is blue-emissive with high photoluminescent quantum yield (PLQY) of 86.2%. Furthermore, the cyano-substituted PPIPOCN realize more blue-shifted emission and equal PLQY comparing to PPIPO, which can be assigned to the formation of hybridized local and charge-transfer (HLCT) excited state. Significantly, the OLED based on the two materials both demonstrated decent performances, such as high external quantum efficiency (EQE) of 12.5% in PPIPO and nice blue purity of Commission Internationale de l'Eclairage y-coordinate (CIEy) of<0.15 in PPIPOCN. This work provides a potential strategy for the designing of the high-efficiency and low-cost next-generation electro-fluorescent materials.  相似文献   

5.
The development of near‐infrared (NIR) organic light‐emitting diodes (OLEDs) is of growing interest. Donor–acceptor (D–A) chromophores have served as an important class of NIR materials for NIR OLED applications. However, the external quantum efficiencies (EQEs) of NIR OLEDs based on conventional D–A chromophores are typically below 1 %. Reported herein is a butterfly‐shaped D–A compound, PTZ‐BZP. A PTZ‐BZP film displayed strong NIR fluorescence with an emission peak at 700 nm, and the corresponding quantum efficiency reached 16 %. Remarkably, the EQE of the NIR OLED based on PTZ‐BZP was 1.54 %, and a low efficiency roll‐off was observed, as well as a high radiative exciton ratio of 48 %, which breaks through the limit of 25 % in conventional fluorescent OLEDs. Experimental and theoretical investigations were carried out to understand the excited‐state properties of PTZ‐BZP.  相似文献   

6.
Designing a donor–acceptor (D–A) molecule with a hybridized local and charge transfer (HLCT) excited state is a very effective strategy for producing an organic light-emitting diode (OLED) with a high exciton utilization efficiency and external quantum efficiency. Herein, a novel twisting D–π–A fluorescent molecule (triphenylamine–anthracene–phenanthroimidazole; TPAAnPI) is designed and synthesized. The excited state properties of the TPAAnPI investigated through photophysical experiments and density functional theory (DFT) analysis reveal that its fluorescence is due to the HLCT excited state. The optimized non-doped blue OLED using TPAAnPI as a light-emitting layer exhibits a novel blue emission with an electroluminescence (EL) peak at 470 nm, corresponding to the Commission International de L''Eclairage (CIE) coordinates of (0.15, 0.22). A fabricated device termed Device II exhibits a maximum current efficiency of 18.09 cd A−1, power efficiency of 12.35 lm W−1, luminescence of ≈29 900 cd cm−2, and external quantum efficiency (EQE) of 11.47%, corresponding to a high exciton utilization efficiency of 91%. Its EQE remains as high as 9.70% at a luminescence of 1000 cd m−2 with a low efficiency roll-off of 15%. These results are among the best for HLCT blue-emitting materials involved in non-doped blue fluorescent OLEDs. The performance of Device II highlights a great industrial application potential for the TPAAnPI molecule.

A new pure fluorescent blue HLCT-emitter was designed and synthesized. Highly efficient non-doped blue OLEDs with low efficiency roll-off were achieved.  相似文献   

7.
Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.76 in doped films (5 wt % in PMMA) at room temperature. The modifications of alkynyl ligands with electron-donating amino groups together with the use of electron-deficient carbene ligands induce ligand-to-ligand charge transfer excited states that give rise to TADF emission. Spectroscopic and density functional theory (DFT) calculations reveal the roles of electron-donating capability of the alkynyl ligand in tuning the excited-state properties. Solution-processed organic light-emitting diodes (OLEDs) using the present complexes as emitters achieve maximum external quantum efficiency (EQE) of up to 20 %.  相似文献   

8.
Developing red thermally activated delayed fluorescence (TADF) emitters, attainable for both high‐efficient red organic light‐emitting diodes (OLEDs) and non‐doped deep red/near‐infrared (NIR) OLEDs, is challenging. Now, two red emitters, BPPZ‐PXZ and mDPBPZ‐PXZ, with twisted donor–acceptor structures were designed and synthesized to study molecular design strategies of high‐efficiency red TADF emitters. BPPZ‐PXZ employs the strictest molecular restrictions to suppress energy loss and realizes red emission with a photoluminescence quantum yield (ΦPL) of 100±0.8 % and external quantum efficiency (EQE) of 25.2 % in a doped OLED. Its non‐doped OLED has an EQE of 2.5 % owing to unavoidable intermolecular π–π interactions. mDPBPZ‐PXZ releases two pyridine substituents from its fused acceptor moiety. Although mDPBPZ‐PXZ realizes a lower EQE of 21.7 % in the doped OLED, its non‐doped device shows a superior EQE of 5.2 % with a deep red/NIR emission at peak of 680 nm.  相似文献   

9.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials are considered a class of organic materials with exceptional electronic and optical properties, which make them promising for the applications in organic light-emitting diodes (OLEDs). In this study, we improved, synthesized, and characterized a multiple-resonance type emitter based on the assembly of MR-building blocks (MR-BBs). By optimizing the geometric arrangement of MR-BBs, we were able to generate narrowband emission in the longer wavelength region and shorten the delayed excited-state lifetime, resulting in improved emission efficiency compared to the parent molecule. Our proof-of-concept molecule, m-DBCz, exhibited narrowband yellowish-green TADF emission with a full width at half-maximum of 32 nm and a small singlet-triplet energy gap of 0.04 eV. The OLED developed using m-DBCz as the emitter demonstrated electroluminescence at 548 nm and achieved a high external quantum efficiency (EQE) of 34.9 %. Further optimization of the device resulted in a high external quantum efficiency of 36.3 % and extremely low efficiency roll-off, with EQE values of 30.1 % and 27.7 % obtained even at high luminance levels of 50 000 and 100 000 cd m−2. These results demonstrate the full potential of MR-TADF materials for applications on ultrahigh-luminance OLEDs.  相似文献   

10.
Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6. Compounds 1-6 displayed the emission tuning between 478 and 526 nm, and fluorescence quantum yield between 0.15 and 0.57. The compounds 2-6 were used as emitters and hosts in organic light-emitting diodes (OLEDs). The highest OLED external quantum efficiency (EQE) observed was 4.6%, which is among the highest observed for Alq(3) complexes. Also, the compounds 3-5 were used as hosts for red phosphorescent dopants to obtain white light-emitting diodes (WOLED). The WOLEDs displayed high efficiency (EQE up to 19%) and high white color purity (color rendering index (CRI≈85).  相似文献   

11.
Recently, researchers have focused on thermally activated delayed fluorescence (TADF) for efficient future lighting and displays. Among TADF emitters, a combination of triazine and acridine is a promising candidate for realizing high-efficiency organic light-emitting devices (OLEDs). However, simultaneous development of perfect horizontal orientation (Θ=100 %) and an external quantum efficiency (EQE) of over 40 % is still challenging. Here, to obtain insights for further improvements of a triazine/acridine combination, various asymmetric spirobiacridine (SBA)-based TADF emitters with a unity photoluminescence quantum yield and high Θ ratio of over 80 % were developed. Furthermore, the substitution effects of the triazine acceptor unit on the photophysical properties were studied, including molecular orientations and OLED performance. The corresponding OLED exhibited sky-blue emission with a high EQE of over 30 %.  相似文献   

12.
Exploring high-efficiency thermally activated delayed fluorescence(TADF) materials is of great importance regarding to organic light-emitting diode(OLED). Herein, we present a design strategy for developing asymmetric TADF materials based on a diphenyl sulfone-phenoxazine structure, resulting in efficient TADF emitters(CzPXZ and t-CzPXZ) with aggregation-induced emission properties, while t-CzPXZ is modified with tert-butyl groups. The two compounds exhibit high solid-state luminescence, efficient TADF, and significantly impressive device performances by both thermal evaporation and solution processing. For an instance, CzPXZ and t-CzPXZ enable the thermally-evaporated OLEDs with high external quantum efficiencies(EQEs) of over 20%. Meanwhile, t-CzPXZ allows the solution-processed device with a high EQE of 16.3% with low-efficiency roll-off, attributing to the enhanced molecular solubility and suppressed excitons quenching through tert-butyl modification on t-CzPXZ. The results reveal that the proposed asymmetric structure is a promising approach for developing high-efficiency TADF materials and OLEDs.  相似文献   

13.
Donor–acceptor (D–A) molecular architecture has been shown to be an effective strategy for obtaining high‐performance electroluminescent materials. In this work, two D–A molecules, Ph‐BPA‐BPI and Py‐BPA‐BPI, have been synthesized by attaching highly fluorescent phenanthrene or pyrene groups to the C6‐ and C9‐positions of a locally excited‐state emitting phenylamine–phenanthroimidazole moiety. Equipped with good physical and hybridized local and charge‐transfer properties, both molecules show high performances as blue emitters in nondoped organic light‐emitting devices (OLEDs). An OLED using Ph‐BPA‐BPI as the emitting layer exhibits deep‐blue emission with CIE coordinates of (0.15, 0.08), and a maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 4.56 %, 3.60 cd A?1, and 3.66 lm W?1, respectively. On the other hand, a Py‐BPA‐BPI‐based, sky‐blue OLED delivers the best results among nondoped OLEDs with CIEy values of < 0.3 reported so far, for which a very low turn‐on voltage of 2.15 V, CIE coordinates of (0.17, 0.29), and maximum CE, PE, and EQE values of 10.9 cd A?1, 10.5 lm W?1, and 5.64 %, were achieved, respectively. More importantly, both devices show little or even no efficiency roll‐off and high singlet exciton‐utilizing efficiencies of 36.2 % for Ph‐BPA‐BPI and 39.2 % for Py‐BPA‐BPI.  相似文献   

14.
A molecular design to high-performance red and near-infrared (NIR) organic light-emitting diodes (OLEDs) emitters remains demanding. Herein a series of dinuclear platinum(II) complexes featuring strong intramolecular Pt???Pt and π–π interactions has been developed by using N-deprotonated α-carboline as a bridging ligand. The complexes in doped thin films exhibit efficient red to NIR emission from short-lived (τ=0.9–2.1 μs) triplet metal-metal-to-ligand charge transfer (3MMLCT) excited states. Red OLEDs demonstrate high maximum external quantum efficiencies (EQEs) of up to 23.3 % among the best PtII-complex-doped devices. The maximum EQE of 15.0 % and radiance of 285 W sr?1 m?2 for NIR OLEDs (λEL=725 nm) are unprecedented for devices based on discrete molecular emitters. Both red and NIR devices show very small efficiency roll-off at high brightness. Appealing operational lifetimes have also been revealed for the devices. This work sheds light on the potential of intramolecular metallophilicity for long-wavelength molecular emitters and electroluminescence.  相似文献   

15.
In this work,a blue emitter with a 3 D rigid structure composed of multiple spirobifluorene(3-Spiro) has been synthesized and characterized.Through a detailed study of the electrochemical and photophysical properties of 3-Spiro,we have evidenced that 3-Spiro can be applied as an active component of organic light-emitting diodes(OLEDs).The device with 5% doping rate of 4 CzPNPh exhibits high external quantum efficiency(EQE) of 11%,which proves the potential of 3 D rigid structure emitters for OLEDs.  相似文献   

16.
Blue thermally activated delayed fluorescence (TADF) emitters that can simultaneously achieve high efficiency in doped and nondoped organic light‐emitting diodes (OLEDs) are rarely reported. Reported here is a strategy using a tri‐spiral donor for such versatile blue TADF emitters. Impressively, by simply extending the nonconjugated fragment and molecular length, aggregation‐caused emission quenching (ACQ) can be greatly alleviated to achieve as high as a 90 % horizontal orientation dipole ratio and external quantum efficiencies (EQEs) of up to 33.3 % in doped and 20.0 % in nondoped sky‐blue TADF‐OLEDs. More fascinatingly, a high‐efficiency purely organic white OLED with an outstanding EQE of up to 22.8 % was also achieved by employing TspiroS‐TRZ as a blue emitter and an assistant host. This compound is the first blue TADF emitter that can simultaneously achieve high electroluminescence (EL) efficiency in doped, nondoped sky‐blue, and white TADF‐OLEDs.  相似文献   

17.
Since their first demonstration, thermally activated delayed fluorescence (TADF) materials have been emerged as the most promising emitters because of their promising applications in optoelectronics, typified by organic light-emitting diodes (OLEDs). In which, the rigid oxygen bridged boron acceptor-featured ( DOBNA ) emitters have gained tremendous impetus for OLEDs, which is ascribed to their excellent external quantum efficiency (EQE). However, these materials often displayed severe efficiency roll-off and poor operational stability. Therefore, there needs to be a comprehensive understanding of the aspect of the molecular design and structure-property relationship. To the best of our knowledge, there is no detailed review on the structure-function outlook of DOBNA -based emitters emphasizing the effect of the nature of donor units, their number density, and substitution pattern on the physicochemical properties, excited state dynamics and OLED performance were reported. To fill this gap, herein we presented the recent advancements in DOBNA -based acceptor featured TADF materials by classifying them into several subgroups based on the molecular design i. e. donor-acceptor (D−A), D−A-D, A−D-A, and multi-resonant TADF (MR-TADF) emitters. The detailed design concepts, along with their respective physicochemical and OLED performances were summarized. Finally, the prospective of this class of materials in forthcoming OLED displays is also discussed.  相似文献   

18.
Two novel bipolar deep-blue fluorescent emitters, IP-PPI and IP-DPPI, featuring different lengths of the phenyl bridge, were designed and synthesized, in which imidazo[1,2-a]pyridine (IP) and phenanthroimidazole (PI) were proposed as an electron acceptor and an electron donor, respectively. Both of them exhibit outstanding thermal stability and high emission quantum yields. All the devices based on these two materials showed negligible efficiency roll-off with increasing current density. Impressively, non-doped organic light-emitting diodes (OLEDs) based on IP-PPI and IP-DPPI exhibited external quantum efficiencies (EQEs) of 4.85 % and 4.74 % with CIE coordinates of (0.153, 0.097) and (0.154, 0.114) at 10000 cd m−2, respectively. In addition, the 40 wt % IP-PPI doped device maintained a high EQE of 5.23 % with CIE coordinates of (0.154, 0.077) at 10000 cd m−2. The doped device based on 20 wt % IP-DPPI exhibited a higher deep-blue electroluminescence (EL) performance with a maximum EQE of up to 6.13 % at CIE of (0.153, 0.078) and maintained an EQE of 5.07 % at 10000 cd m−2. To the best of our knowledge, these performances are among the state-of-the art devices with CIEy≤0.08 at a high brightness of 10000 cd m−2. Furthermore, by doping a red phosphorescent dye Ir(MDQ)2 (MDQ=2-methyldibenzo[f,h]quinoxaline) into the IP-PPI and IP-DPPI hosts, high-performance red phosphorescent OLEDs with EQEs of 20.8 % and 19.1 % were achieved, respectively. This work may provide a new approach for designing highly efficient deep-blue emitters with negligible roll-off for OLED applications.  相似文献   

19.
Developing efficient deep-blue non-doped organic light-emitting diodes (OLEDs) is of great significance in practical applications. Here, two highly efficient asymmetric anthracene-based fluorescent emitters, 1-phenyl-2-(4-(10-(4-(2-phenyl-1H-phenanthro[9,10-d]imidazole-1-yl)phenyl)anthracen-9-yl)phenyl)-1H-phenanthro [9,10-d]imidazole (PPI-An-NPPI) and 1-phenyl-2-(4-(10-(4-(2,4,5-triphenyl-1H-imidazole-1-yl)phenyl) anthracen-9-yl)phenyl)-1H-phenanthro[9,10-d]imidazole (PPI-An-NPIM), have been designed and synthesized by introducing large steric hindrance imidazole moieties to regulate molecular excited states and photophysical properties. Experimental data show that they have high photoluminescence efficiencies, good thermal stabilities, and suitable energy levels for carrier injection. Theoretical calculations present that their high-lying excited states exhibit dominant locally excited-state characteristics with enhancing oscillator strength compared with anthracene core. The calculated transition dipole moments data show that two molecules are preferentially oriented along the horizontal direction. In addition, some hot exciton mechanism-like channels are also observed and confirmed, which are beneficial for the productive triplet-singlet exciton conversion. The non-doped OLED using PPI-An-NPPI as the emitting layer achieves a maximum external quantum efficiency (EQEmax) of 7.75% and Commission Internationale de L’Eclairage (CIE) coordinates of (0.15, 0.11), whereas PPI-An-NPIM gives a better color purity of CIE (0.14, 10) with an EQEmax of 7.48%. Moreover, all devices exhibit an insignificant efficiency roll-off at high luminescence and still yield an EQE of 7.61% and 7.14% at 1,000 cd/m2. This work provides an interesting insight into developing efficient deep-blue fluorescent emitters for high-performance non-doped OLEDs.  相似文献   

20.
Advanced multiple resonance induced thermally activated delayed fluorescence (MR-TADF) emitters have emerged as a privileged motif for applications in organic light-emitting diodes (OLEDs), because they furnish highly tunable TADF characteristics and high color purity emission. Herein, based on the unique nitrogen-atom embedding molecular engineering (NEME) strategy, a series of compounds BN-TP-Nx (x=1, 2, 3, 4) have been customized. The nitrogen-atom anchored at different position of triphenylene hexagonal lattice entails varying degrees of perturbation to the electronic structure. The newly-constructed emitters have demonstrated the precise regulation of emission maxima of MR-TADF emitters to meet the actual industrial demand, and further enormously enriched the MR-TADF molecular reservoir. The BN-TP-N3-based OLED exhibits ultrapure green emission, with peak of 524 nm, full-width at half-maximum (FWHM) of 33 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.71), and maximum external quantum efficiency (EQE) of 37.3 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号