首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Herein, two deep-blue emissive molecules ( SAF-PI and SAF-DPI ) are designed and synthesized using spiro[acridine-9,9’-fluorene] as a donor (D) substituted with 2-(3-methylphenyl)-1-phenyl-phenanthro[9,10-d]imidazole as an acceptor (A), forming twisted D−A and A−D−A structures, respectively. The photophysical studies and density functional theory (DFT) calculations reveal that both molecules exhibit hybridized local excited and charge transfer (HLCT) characteristics with deep blue emission color. They are effectively applied as non-doped emitters in OLEDs. Particularly, SAF-PI -based device achieves the high-definition television (HDTV) standard blue color emission peaked at 428 nm with CIE coordinate of (0.156, 0.053), a narrow full width at half maximum of 55 nm, a maximum external quantum efficiency (EQEmax) of 4.57% and an exciton utilization efficiency of 65%.  相似文献   

2.
Acquiring desirable device performance with deep-blue color purity that fulfills practical application requirements is still a challenge. Bipolar fluorescent emitters with hybrid local and charge transfer (HLCT) state may serve to address this issue. Herein, by inserting anthracene core in the deep-blue building blocks, the authors successfully developed two highly twisted D-π-A fluorescent emitters, ICz-An-PPI and IP-An-PPI , featuring different acceptor groups. Both exhibited superb thermal stabilities, high photo luminescent quantum yields and excellent bipolar transport capabilities. The non-doped OLEDs using ICz-An-PPI and IP-An-PPI as the emitting layers showed efficient blue emission with an external quantum efficiency (EQEmax) of 4.32 % and 5.41 %, and the CIE coordinates of (0.147, 0.180) and (0.149, 0.150), respectively. In addition, the deep blue doped device based on ICz-An-PPI was achieved with an excellent CEmax of 5.83 cd A−1, EQEmax of 4.6 % and the CIE coordinate of (0.148, 0.078), which is extremely close to the National Television Standards Committee (NTSC) standard. Particularly, IP-An-PPI -based doped device had better performance, with an EQEmax of 7.51 % and the CIE coordinate of (0.150, 0.118), which was very impressive among the recently reported deep-blue OLEDs with the CIEy <0.12. Such high performance may be attributed to the hot exciton HLCT mechanism via T7 to S2. Our work may provide a new approach for designing high-efficiency deep-blue materials.  相似文献   

3.
Efficient multifunctional materials acting as violet-blue emitters, as well as host materials for phosphorescent OLEDs, are crucial but rare due to demand that they should have high first singlet state (S1) energy and first triplet state (T1) energy simultaneously. In this study, two new violet-blue bipolar fluorophores, TPA-PI-SBF and SBF-PI-SBF , were designed and synthesized by introducing the hole transporting moiety triphenylamine (TPA) and spirobifluorene (SBF) unit that has high T1 into high deep blue emission quantum yield group phenanthroimidazole (PI). As the results, the non-doped OLEDs based on TPA-PI-SBF exhibited excellent EL performance with a maximum external quantum efficiency (EQEmax) of 6.76 % and a violet-blue emission with Commission Internationale de L′Eclairage (CIE) of (0.152, 0.059). The device based on SBF-PI-SBF displayed EQEmax of 6.19 % with CIE of (0.159, 0.049), which nearly matches the CIE coordinates of the violet-blue emitters standard of (0.131, 0.046). These EL performances are comparable to the best reported non-doped deep or violet-blue emissive OLEDs with CIEy<0.06 in recent years. Additionally, the green, yellow and red phosphorescent OLEDs with TPA-PI-SBF and SBF-PI-SBF as host materials achieved a high EQEmax of about 20 % and low efficiency roll-off at the ultra-high luminance of 10 000 cd m−2. These results provided a new construction strategy for designing high-performance violet-blue emitters, as well as efficient host materials for phosphorescent OLEDs.  相似文献   

4.
Herein, we present a molecular design of chrysene-based deep-blue emissive materials ( TC , TpPC , TpXC , and TmPC ), in which chrysene as a core is functionalized with different triphenylamine moieties to realize a fine-tuning deep-blue fluorescence with superior electroluminescent (EL) performance. The photophysical analyses and density functional theory (DFT) calculations disclose that TC , TpPC , and TpXC possess HLCT characteristics with intense deep-blue emission in the solid-state, good hole-transporting ability, and high thermal and electrochemical stabilities. They are successfully employed as non-doped emitters in simple structured OLEDs (ITO/PEDOT : PSS : NF/emitter/TPBi/LiF : Al). In particular, TC -based device emits a deep-blue light with an emission peak at 446 nm and CIE color coordinates of (0.148, 0.096), a maximum external quantum efficiency (EQEmax) of 4.31%, and a low turn-on voltage of 2.8 V.  相似文献   

5.
Thermally activated delayed fluorescent(TADF) materials capable of efficient solution-processed nondoped organic light-emitting diodes(OLEDs) are of important and practical significance for further development of OLEDs. In this work, a new electron-donating segment, 2,7-di(9 H-carbazol-9-yl)-9,9-dimethyl-9,10-dihydroacridine(2 Cz-DMAC), was designed to develop solution-processable non-doped TADF emitters. 2 Cz-DMAC can not only simultaneously increase the solubility of compounds and suppress har...  相似文献   

6.
Three new emitters,namely 10,10'-(quinoline-2,8-diyl)bis(10 H-phenoxazine)(Fene),10,10'-(quinoline-2,8-diyl)bis(10 H-phenothiazine)(Fens) and 10,10'-(quinoline-2,8-diyl)bis(9,9-dimethyl-9,10-dihydroacridine)(Yad),featuring quinoline as a new electron acceptor have been designed and conveniently synthesized.These emitters possessed small singlet-triplet splitting energy(ΔEst) and twisted structures,which not only endowed them show thermally activated delayed fluorescence(TADF)properties but also afforded a remarkable aggregation-induced emission(AIE) feature.Moreover,they also showed aggregation-induced delayed fluorescence(AIDF) property and good photoluminescence(PL) property,which are the ideal emitters for non-doped organic light-emitting diodes(OLEDs).Furthermore,high-performance non-doped OLEDs based on Fene,Fens and Yad were achieved,and excelle nt maximum external quantum efficiencies(EQE_(max)) of 14,9%,13.1% and 17,4%,respectively,were obtained.It was also found that all devices exhibited relatively low turn-on voltages ranging from 3.0 V to3.2 V probably due to their twisted conformation and the AIDF properties.These results demonstrated the quinoline-based emitters could have a promising application in non-doped OLEDs.  相似文献   

7.
High-performance deep-blue emitters with external quantum efficiencies (EQEs) exceeding 5 % are still scarce in organic light-emitting diodes (OLEDs). In this work, by introducing a [1,2,4]triazolo[1,5-a] pyridine (TP) unit at the N1 position of phenanthroimidazole (PI), two luminescent materials, PTPTPA and PTPTPA , were obtained. Systematic photophysical analysis showed that the TP block is suitable for constructing hybridized local and charge-transfer (HLCT) emitters. Its moderate electron-withdrawing ability and rigid planar structure can enhance the CT component while ensuring color purity. In addition, compared with PTPTPA , the additional phenyl ring of PTPBPTA not only increased the oscillator strength, but also decreased the Stokes shift. TDDFT calculations pointed out facile reverse intersystem crossing processes in PTPTPA from high-lying triplet states to the singlet excited state. A nondoped device based on PTPTPA as emitter showed impressive performance with EQEmax of 7.11 % and CIE coordinates of (0.15, 0.09). At the same time, it was also an efficient host for yellow and red phosphorescent OLEDs. By doping yellow (PPYBA) and red (BTPG) phosphorescent dyes into PTPTPA , a white OLED with a high EQE of 23.85 % was achieved. The successful design of PTPTPA not only provided an optimization choice for OLED emitters, but also demonstrated the empirical rules for the design of multifunctional deep-blue emitters.  相似文献   

8.
Two novel bipolar deep-blue fluorescent emitters, IP-PPI and IP-DPPI, featuring different lengths of the phenyl bridge, were designed and synthesized, in which imidazo[1,2-a]pyridine (IP) and phenanthroimidazole (PI) were proposed as an electron acceptor and an electron donor, respectively. Both of them exhibit outstanding thermal stability and high emission quantum yields. All the devices based on these two materials showed negligible efficiency roll-off with increasing current density. Impressively, non-doped organic light-emitting diodes (OLEDs) based on IP-PPI and IP-DPPI exhibited external quantum efficiencies (EQEs) of 4.85 % and 4.74 % with CIE coordinates of (0.153, 0.097) and (0.154, 0.114) at 10000 cd m−2, respectively. In addition, the 40 wt % IP-PPI doped device maintained a high EQE of 5.23 % with CIE coordinates of (0.154, 0.077) at 10000 cd m−2. The doped device based on 20 wt % IP-DPPI exhibited a higher deep-blue electroluminescence (EL) performance with a maximum EQE of up to 6.13 % at CIE of (0.153, 0.078) and maintained an EQE of 5.07 % at 10000 cd m−2. To the best of our knowledge, these performances are among the state-of-the art devices with CIEy≤0.08 at a high brightness of 10000 cd m−2. Furthermore, by doping a red phosphorescent dye Ir(MDQ)2 (MDQ=2-methyldibenzo[f,h]quinoxaline) into the IP-PPI and IP-DPPI hosts, high-performance red phosphorescent OLEDs with EQEs of 20.8 % and 19.1 % were achieved, respectively. This work may provide a new approach for designing highly efficient deep-blue emitters with negligible roll-off for OLED applications.  相似文献   

9.
本研究通过不对称、刚性扭曲的分子设计理念,合成了高效深蓝有机电致发光材料MBTPI。该化合物具有很高的分解温度(496℃)与玻璃转化温度(190℃),有利于提高器件的稳定性;不对称刚性扭曲的分子构型有效控制了分子的整体共轭程度,使发光波长在深蓝光区,固体发光量子产率高达74%。理论计算验证了分子不对称扭曲的构型,并且发现甲基的引入对前线轨道分布影响不大,分子保留了较好的双极性质。基于MBTPI的非掺杂器件发射出非常高效的深蓝光。色纯度为(0.15,0.07),非常接近NTSC的蓝光标准(0.14,0.08)。最大外量子效率为4.91%,并且效率滚降很小,为性能最好的非掺杂深蓝光器件之一。  相似文献   

10.
Corannulene-derived materials have been extensively explored in energy storage and solar cells, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1H) and a lower-lying T1 (T1L) can be observed, while for TPXZPhCor, T1H-dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1H states of TPXZPhCor, the first corannulene-based solution-processed afterglow OLEDs is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax) and a luminance (Lmax) of 3.3 % and 5167 cd m−2, respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.  相似文献   

11.
Thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission (AIE) features are hot candidates for non-doped organic light-emitting diodes (OLEDs), as they are highly emissive in solid states upon photoexcitation. Nevertheless, not every AIE-TADF emitter in the past had guaranteed decent efficiencies in non-doped devices, indicating that the AIE character alone does not necessarily afford ideal non-doped TADF emitters. As intermolecular electron-exchange interaction that involves long-lived triplet excitons plays a dominant role in the whole quenching process of TADF, we anticipate that it is the main reason for the different electroluminescence performances of AIE-TADF emitters. Therefore, in this work, we designed two TADF emitters SPBP-DPAC and SPBP-SPAC by modifying a reported less successful emitter BP-DPAC with extra fluorenes to increase intermolecular distances and attenuate this electron-exchange interaction. With the fluorene lock as steric hindrance, SPBP-DPAC and SPBP-SPAC exhibit significantly higher exciton utilization in non-doped films due to the suppressed concentration quenching. The non-doped OLEDs based on SPBP-DPAC and SPBP-SPAC show an excellent maximum external quantum efficiency (EQE) of 22.8% and 21.3% respectively, and what''s even more promising is that ignorable roll-offs at practical brightness (e.g., 1000 and 5000 cd m−2) were realized. These results reveal that locking the phenyl rings as steric hindrance can not only enhance the molecular rigidity, but also cause immediate relief of concentration quenching, and result in significant performance improvement under non-doped conditions. Our approach proposes a feasible molecular modification strategy for AIE-TADF emitters, potentially increasing their applicability in OLEDs.

Two TADF emitters were developed by modifying a reported less successful emitter BP-DPAC with fluorene to suppress concentration quenching. Their non-doped OLEDs displayed excellent EQEs of 22.8% and 21.3% with well-suppressed roll-off.  相似文献   

12.
本文设计合成了一系列以吖啶为核的荧光小分子发光化合物(1~4),通过在分子两侧引入不同的取代基来调节化合物的能级、载流子传输性质.对这些材料的光物理、电化学、热力学和能量转移性能进行了系统表征.结果表明这些材料具有高的发光效率、合理的能级结构和良好的主/客体能量转移特性.以这些材料为发光层的器件显示了优良的性能,电致发光器件的开启电压为2.4V,最高效率可达到13.3lm/W和11.8cd/A.  相似文献   

13.
Narrowband deep blue thermally activated delayed fluorescent (TADF) materials have attracted significant attention. Herein, four asymmetrical structured TADF emitters based on diphenylsulfone (DPS) acceptor and 9,9-dimethyl-9,10-dihydroacridine (DMAC) donor with progressive performances were developed. The tert-butyloxy auxiliary electron-donor was adopted to restrict the intramolecular rotations and provide efficient steric hindrance. Regioisomerization by altering the substitution position of DMAC on DPS unit further enhanced the intra- and inter-molecular interactions. The accompanying effects yielded increased energy level, minimized reorganization energy, and inhibited non-radiative transitions in the crystals of t BuO-SOmAD , which achieved narrowband deep-blue emission peaking at 424 nm (FWHM=64 nm, ΦF=33.6 %) through aggregation-induced, blue-shifted emission (AIBSE). In addition, deep-blue organic light emitting diodes (OLEDs) based on t BuO-SOmAD realized the electroluminescence (EL) spectrum peaking located at 435 nm and CIE coordination of (0.12, 0.09).  相似文献   

14.
《化学:亚洲杂志》2017,12(17):2189-2196
Blue organic light‐emitting diodes (OLEDs) are necessary for flat‐panel display technologies and lighting applications. To make more energy‐saving, low‐cost and long‐lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky‐blue emitters, 1,4,5‐triphenyl‐2‐(4‐(1,2,2‐triphenylvinyl)phenyl)‐1H‐imidazole (TPEI), 1‐(4‐methoxyphenyl)‐4,5‐diphenyl‐2‐(4‐(1,2,2‐triphenylvinyl)phenyl)‐1H‐imidazole (TPEMeOPhI) and 1‐phenyl‐2,4,5‐tris(4‐(1,2,2‐triphenylvinyl)phenyl)‐1H‐imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation‐induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non‐doped sky‐blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A−1, 2.70 lm W−1), 2.16 (4.33 cd A−1, 2.59 lm W−1) and 3.13 % (6.97 cd A−1, 4.74 lm W−1) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll‐off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI‐based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices.  相似文献   

15.
以1,2-二苯基菲并咪唑(PPI)为模型化合物, 通过改变N1苯环上取代基结构制备了2类PPI衍生物, 并采用核磁共振谱对其化学结构进行了确认. 通过对PPI及其衍生物的单分子荧光光谱精细结构的分析, 比较了取代基位置和结构的变化对菲并咪唑类化合物荧光过程中发射主峰精细振动结构及所占比例的影响. 其中, N1链接苯环中R4位的取代基效应最显著, 当引入推电子或弱的吸电子取代基时, 菲并咪唑类衍生物的低能级发射比例降低, 荧光色纯度提高; 当引入强吸电子取代基时, 低能级发射比例增加, 光谱半峰宽加大. 本文结果为菲并咪唑基“蓝光”材料的设计提供了一定数据的支持与科学依据.  相似文献   

16.
In this paper, two AIE-active luminogens (Oxa-pTPE and Oxa-mTPE) constructed from tetraphenylethene and oxadiazole units were successfully synthesized and their thermal, optical and electronic properties were investigated. By linking TPE to the oxadiazole core through meta-or para-position, the intramolecular conjugation is effectively controlled. Thanks to the intelligent molecular design and specific AIE feature, when fabricated as emissive layers in non-doped OLEDs, they exhibit blue or deep-blue emission with CIE coordinates of (0.17, 0.23) and (0.15, 0.12), and good efficiencies with ηC, max and ηP, max up to 1.52 cd A-1 and 0.84 Im W-1 , shedding some light on the construction of deep-blue AIE fluorophores.  相似文献   

17.
《中国化学快报》2020,31(5):1188-1192
Achieving stable deep blue organic light emitting diodes (OLEDs) with narrow full width at half maximum (FWHM) and color gamut in the range of the commission International de L’Eclairage (CIE) of y ≤ 0.10 is still challenging in display and lighting applications. In this investigation, three donor-acceptor (D-A) deep-blue emitters were designed and synthesized via integrating asymmetric quinazoline (PQ) acceptor with weak donating carbazole (Cz) donor. The effect of the position and number of Cz group in PQ unit are investigated, which is also first examples for systematic research about the effect of different position of asymmetric PQ as acceptor on deep OLEDs. Their bandgaps of 3.12∼3.19 eV and the singlet state energy levels of 3.12∼3.19 eV were found to be sufficiently large to achieve deep blue light. As expected, these emitters-based OLEDs exhibit deep blue emission with the maximum wavelength ≤ 450 nm and narrow FWHM ≈ 60 nm. Especially, a CIE of y = 0.080 was achieved for 4PQ-Cz-based OLED. Significantly, the deep blue electroluminescence (EL) spectra of these three emitters-based OLEDs are very stable and the corresponding CIE coordinates deviation (ΔCIE (x, y)) can be negligible under the applied voltage ranging from 5 V to 9 V.  相似文献   

18.
A series of green-emitting thiophenyl coumarin-cored carbazole dendrimers containing carbazole dendrons up to the third generation as substituent were synthesized and characterization. Their optical, thermal, electrochemical, and electroluminescent properties as non-doped solution-processed light-emitters for OLEDs were investigated. By incorporating carbazole dendrons in the molecule, we are able to reduce the crystallization and retain the high emissive ability of a planar thiophenyl coumarin fluorescent core in the solid state as well as improve the thermal stability of the material. These dendrimers showed a bright-green fluorescence and can form morphologically stable amorphous thin films with glass-transition temperatures as high as 285 °C. Simple structured solution-processed OLEDs using these materials as hole-transporting non-doped emitters and BCP as a buffer layer emit a stable green electroluminescence (λEL=502–526 nm) with high luminance efficiencies (up to 7.92 cd/A at 7.39 mA/cm2) and high green color purity (CIE=0.26, 0.62, which are close to the pure green color).  相似文献   

19.
Phosphorescent iridium(III) complexes have been widely researched for the fabrication of efficient organic light-emitting diodes (OLEDs). In this work, three red Ir(III) complexes named Ir-1, Ir-2, and Ir-3, with Ir-S-C-S four-membered framework rings, were synthesized efficiently at room temperature within 5 min using sulfur-containing ancillary ligands with electron-donating groups of 9,10-dihydro-9,9-dimethylacridine, phenoxazine, and phenothiazine, respectively. Due to the same main ligand of 4-(4-(trifluoromethyl)phenyl)quinazoline, all Ir(III) complexes showed similar photoluminescence emissions at 622, 619, and 622 nm with phosphorescence quantum yields of 35.4%, 50.4%, and 52.8%, respectively. OLEDs employing these complexes as emitters with the structure of ITO (indium tin oxide)/HAT-CN (dipyra-zino[2,3-f,2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, 5 nm)/TAPC (4,4′-cyclohexylidenebis[N,N-bis-(4-methylphenyl)aniline], 40 nm)/TCTA (4,4″,4″-tris(carbazol-9-yl)triphenylamine, 10 nm)/Ir(III) complex (10 wt%): 2,6DCzPPy (2,6-bis-(3-(carbazol-9-yl)phenyl)pyridine, 10 nm)/TmPyPB (1,3,5-tri(mpyrid-3-yl-phenyl)benzene, 50 nm)/LiF (1 nm)/Al (100 nm) achieved good performance. In particular, the device based on complex Ir-3 with the phenothiazine unit showed the best performance with a maximum brightness of 22,480 cd m−2, a maximum current efficiency of 23.71 cd A−1, and a maximum external quantum efficiency of 18.1%. The research results suggest the Ir(III) complexes with a four-membered ring Ir-S-C-S backbone provide ideas for the rapid preparation of Ir(III) complexes for OLEDs.  相似文献   

20.
Phosphorescent and thermally activated delayed fluorescence(TADF) emitters can break through the spin statistics rules and achieve great success in external quantum efficiency(over 5%).However,maintaining high efficiency at high brightness is a tremendous challenge for applications of organic light emitting diodes.Hence,we reported two phenanthroimidazole derivatives PPI-An-CN and PPI-An-TP and achieved extremely low efficiency roll-off with about 99% of the maximum external quantum efficiency(EQE_(max)) maintained even at a high luminance of 1000 cd/cm2 based non-doped devices.When doping the two materials in CBP(4,4'-bis(N-carbazolyl)-1,1'-biphenyl),the doped devices still exhibited excellent stability at high brightness with CIE_y≈0.07 and low turn-on voltage of only 2.8 V.The state-ofthe-art low efficiency roll-off makes the new materials attractive for potential applications.It is the first time that the Fragment Contribution Analysis method has been used to analyze the excited state properties of the molecules in the field of OLEDs,which helps us understand the mechanism more intuitively and deeply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号