首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Analytical letters》2012,45(2):299-311
A carbon paste electrode modified with gold nanoparticles (AuMCPE) was used as a highly sensitive sensor for determination of Tyrosine (Tyr), in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution. The measurements were carried out by using of differential pulse voltammetry (DPV), cyclic voltammetry (CV), amd chronocoulometry and chronoamperometry methods. The prepared electrode shows voltammetric responses with high sensitivity and selectivity for Tyr in the presence of SDS. The relationship between the oxidation peak current of Tyr and its concentration was obtained linearly and it was 1.0 × 10?7 to 1.0 × 10?5 M with a detection limit of 5.5 × 10?8 M in the absence of SDS. On the other hand the oxidation peak current of Tyr increased significantly at AuMCPE in the presence of SDS and its detection limit was reduced to 2.7 × 10?9 M. The proposed voltammetric approach was also applied to the determination of Tyr concentration in human serum.  相似文献   

2.
《Analytical letters》2012,45(1):22-33
A three-dimensional L-cysteine (L-cys) monolayer assembled on gold nanoparticles (GNP) providing simultaneous detection of uric acid (UA) and ascorbic acid (AA) was studied in this work. The cyclic voltammetry demonstrated that, at a bare glassy carbon electrode (GCE) or planar gold electrode, the mixture of UA and AA showed one overlapped oxidation peak; whereas when the electrode was modified with GNP, the oxidation peaks for UA and AA were separated. While a GNP modified electrode was further modified with L-cys monolayer (L-cys/GNP/GCE), namely, three-dimensional L-cys monolayer, a better separation for UA and AA response was obtained. Interestingly, the L-cys monolayer-modified planar gold electrode presented a block effect on the oxidation of AA, which was facilitated by the three-dimensional L-cys monolayer attributed to its distinct structure. The pH of solution presented a noticeable effect on the separation of UA and AA at GNP modified electrodes with or without L-cys monolayer. Wide concentration ranges from 2 × 10?6?1 × 10?3 M to UA and 2 × 10?6?8 × 10?4 M to AA could be obtained at L-cys/GNP/GCE.  相似文献   

3.
In this paper, a simple, convenient and sensitive electrochemical method has been developed for the determination of C.I. Direct Red 80. A gold nanoparticle modified carbon paste electrode was fabricated and used for study and sensitive determination of Direct Red 80 by cyclic voltammetry and differential pulse voltammetry. The overall analysis involved a two-step procedure: an accumulation step under open-circuit conditions, followed by voltammetric measurements of Direct Red 80 in a 0.1?M phosphate buffer solution at pH?=?3.0. The experimental conditions, such as the medium, pH and accumulation time, were optimised. The oxidation peak current was proportional to the concentration of Direct Red 80 from 5.0?×?10?8 to 5.0?×?10?7?M and 5.0?×?10?7 to 3.0?×?10?6?M, and the detection limit was 1.15?×?10?8?M (S/N?=?3). The proposed method was used to detect Direct Red 80 in natural water and sewage with good accuracy.  相似文献   

4.
《Electroanalysis》2005,17(11):941-945
A glassy carbon electrode (GCE) was modified with electropolymerized films of cresol red in pH 5.6 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode shows an excellent electrocatalytic effect on the oxidation of norepinephrine (NE). The peak current increases linearly with the concentration of NE in the range of 3×10?6–3×10?5 M by the differential pulse voltammetry. The detection limit was 2×10?7 M. The modified electrode can also separate the electrochemical responses of norepinephrine and ascorbic acid (AA). The separation between the anodic peak potentials of NE and AA was 190 mV by the cyclic voltammetry. And the responses to NE and AA at the modified electrode were relatively independent.  相似文献   

5.
In the present work, an electrochemical sensor was developed for simple and sensitive determination of tryptophan (Trp) using multi‐walled carbon nanotubes modified sol‐gel electrode (MWCNTs/SGE). The electrocatalytic oxidation of tryptophan was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the oxidation peak current of Trp at the MWCNTs/SGE was greatly improved compared with that of the bare SGE. Furthermore, at the MWCNTs/SGE, the anodic peak potential of Trp is shifted about 220 mV to more negative value indicated that modified electrode has better electrocatalytic activity for electro‐oxidation of Trp. The anodic peak currents increased linearly with the concentration of tryptophan in the range of 0.2 × 10?6 to 15 × 10?6 M with a detection limit of 0.139 × 10?6 M (at an S/N = 3).  相似文献   

6.
The Cu (II) imprinted polymer glassy carbon electrode (GCE/Cu-IP) was prepared by electropolymerization of pyrrole at GCE in the presence of methyl red as a dopant and then imprinting by Cu2+ ions. This electrode was applied for potentiometric and voltammetric detection of Cu2+ ion. The potentiometric response of the electrode was linear within the Cu2+ concentration range of 3.9 × 10?6 to 5.0 × 10?2 M with a near-Nernstian slope of 29.0 mV decade?1 and a detection limit of 5.0 × 10?7 M. The electrode was also used for preconcentration anodic stripping voltammetry and results exhibited that peak currents for the incorporated copper species were dependent on the metal ion concentration in the range of 1.0 × 10?8 to 1.0 × 10?3 M and detection limit was 6.5 × 10?9 M. Also the selectivity of the prepared electrode was investigated. The imprinted polymer electrode was used for the successful assay of copper in two standard reference material samples.  相似文献   

7.
Differential pulse and cyclic voltammetry were applied for the oxidation of mixture of uric acid and ascorbic acid at the surface of carbon paste/cobalt Schiff base composite electrode. The electrooxidation of these compounds at bare electrode is sluggish, and there is no suitable peak separation between them. However, using cobalt methyl salophen as modifier, two well-defined anodic waves with a considerable enhancement in the peak current and a remarkable peak potential separation near 315 mV are obtained. It can improve the kinetics of electron transfer for both compounds remarkably. All these improvements are created because of the electrocatalytic property of cobalt Schiff base complex. The effect of some parameters such as pH and scan rates were studied. All the anodic peak currents for the oxidation of ascorbic acid and uric acid shifted toward more negative potential with an increase in pH, revealing that protons have taken part in their electrode reaction processes. The best peak separation with appropriate current was obtained for pH 4.0. A linear range of 5.0?×?10?4 to 1.0?×?10?8 and 1.0?×?10?3 to 1.0?×?10?8 M with detection limit of 8.0?×?10?9 and 8.0?×?10?9 M was obtained for ascorbic acid and uric acid using differential pulse voltammetry at the surface of modified electrode, respectively. Analytical utility of the modified electrode has been examined successfully using human urine samples and vitamin C commercial tablets.  相似文献   

8.
《Analytical letters》2012,45(16):2665-2682
Abstract

The oxidation of theophylline was studied at a carbon paste electrode in the presence of cetyltrimethyl ammonium bromide by cyclic and differential pulse voltammetry. The results indicated that the electrochemical responses of theophylline are apparently improved by cetyltrimethyl ammonium bromide, due to the enhanced accumulation of theophylline at carbon paste electrode surface. Under optimal conditions the peak current was proportional to theophylline concentration in the range of 8.0 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.85 × 10?7 M by differential pulse voltammetry. The proposed method was applied to the determination of theophylline in tablet and urine samples.  相似文献   

9.
A new chemically modified carbon paste electrode is fabricated to determine lead ion concentration in its trace level in aqueous media with differential pulse voltammetry (DPV). The best performance is obtained by the carbon paste electrode composition including 20% of dithiodibezoic acid (DDA), 80% of high purity graphite powder and 60?µL of colloidal gold nanoparticle (AuNP) solution. The proposed electrode has a wide linear calibration response from 1?×?10?9 to 6?×?10?5 M with a detection limit of 6.6?×?10?10?M, at pH 3.5. Seven replicate determination of 5?×?10?8?M of lead ion concentration gives a relative standard deviation of 3.33%. The modified sensor is applied to determine lead contents in some environmental and biological Samples with satisfactory results.  相似文献   

10.
Phytic acid (PA) with its unique structure was attached to a glassy carbon electrode (GCE) to form PA/GCE modified electrode which was characterized by electrochemical impedance. The electrochemical behavior of cytochrome c (Cyt c) on the PA/GCE modified electrode was explored by cyclic voltammetry and differential pulse voltammetry. The Cyt c displayed a quasi-reversible redox process on PA modified electrode pH 7.0 phosphate buffer solution with a formal potential (E 0′) of 57 mV (versus Ag/AgCl). The peak currents were linearly related to the square root of the scan rate in the range of 20–120 mV·s?1. The electron transfer rate constant was determined to be 12.5 s?1. The PA/GCE modified electrode was applied to the determination of Cyt c, in the range of 5?×?10?6 to 3?×?10?4 M, the currents increase linearly to the Cyt c concentration with a correlation coefficient 0.9981. The detection limit was 1?×?10?6 M (signal/noise?=?3).  相似文献   

11.
《Analytical letters》2012,45(4):668-677
Abstract

5-[4-(3-Mercaptopropyloxy)phenyl]-10,15,20-tris (2-chlorphenyl) porphyrin was utilized for fabricating a self-assembled monolayer (SAM) on a gold electrode. Then cobalt(II) was inserted into the the monolayer by refluxing the cobalt(II) solution in which the pre-assembled porphyrin-modified electrode was immersed. The monolayers were characterized by cyclic voltammetry (CV). Oxidation and catalytic mechanisms of dopamine on the modified electrode were also investigated and elucited respectively. Catalytic currents increased linearly with dopamine (DA) concentration in the range of 1.0 × 10?9 to 2.0 × 10?3 mol/L with the correlation coefficient of 0.9989. The modified electrode can be help develop a simple, quick, sensitive, and accurate method for the determination of the biomolecules such as dopamine.  相似文献   

12.
A new method for the determination of trace copper was described. A multiwalled carbon nanotube modified carbon paste electrode was prepared and the adsorptive voltammetric behavior of copper‐alizarin red S (ARS) complex at the modified electrode was investigated. By use of the second‐order derivative linear sweep voltammetry, it was found that in 0.04 mol/L acetate buffer solution (pH 4.2) containing 4×10?6 mol/L ARS, when accumulation potential is 0 mV, accumulation time is 60 s and scan rate is 100 mV/s, the complex can be adsorbed on the surface of the electrode, yielding one sensitive reduction peak at ?172 mV (vs. SCE). The peak current of the complex is proportional to the concentration of Cu(II) in the range of 2.0×10?11–4.0×10?7 mol L?1 with a detection limit (S/N=3) of 8.0×10?12 mol/L (4 min accumulation). The proposed method was successfully applied to the determination of copper in biological samples with satisfactory results, the recoveries were found to be 96%–102%.  相似文献   

13.
《Analytical letters》2012,45(9):1552-1563
The development and application of an L-glutamic acid functionalized graphene nanocomposite, modified glassy carbon electrode are reported for the determination of epinephrine. The properties of the nanocomposite were characterized by scanning electron microscopy, ultraviolet-visible absorption spectroscopy, infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The modified electrode had high sensitivity and strongly catalytic activity for the detection of epinephrine. A linear relationship between the epinephrine concentration and the current response was obtained in the range of 1 × 10?7 M to 1 × 10?3 M by differential pulse voltammetry with a limit of detection of 3 × 10?8 M. The modified electrode was employed to determine epinephrine in urine with satisfactory results.  相似文献   

14.
A novel MCM/ZrO2 nanoparticles modified carbon paste electrode (MZ-CPE) was fabricated and used to study the electro oxidation of epinephrine (EP) and acetaminophen (AC) and their mixtures by electrochemical methods. The modified electrode showed electrocatalytic activity toward EP and AC oxidation with a decrease of the overpotential by 173 mV to a less positive potential for EP at the surface of the MZ-CPE and an increase in peak current at pH 7.0. Differential pulse voltammetry peak currents of EP and AC increased linearly with their concentrations in the ranges of 1.0 × 10?6–2.5 × 10?3 and 1.0 × 10?6–2.0 × 10?3 M, respectively, and the detection limits for EP and AC were 5.0 × 10?7 and 4.5 × 10?7 M, respectively.  相似文献   

15.
Enzyme-free amperometric ultrasensitive determination of hydrogen peroxide (H2O2) was investigated using a Prussian blue (PB) film-modified gold nanoparticles (AuNPs) graphite–wax composite electrode. A stable PB film was obtained on graphite surface through 2-aminoethanethiol (AET)-capped AuNPs by a simple approach. Field emission scanning electron microscope studies results in formation of PB nanoparticle in the size range of 60–80 nm. Surface modification of PB film on AET–AuNPs–GW composite electrode was confirmed by Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy studies. Highly sensitive determination of H2O2 at a peak potential of ?0.10 V (vs. SCE) in 0.1 M KCl PBS, pH?=?7.0) at a scan rate of 20 mVs?1 with a sensitivity of 23.58 μA/mM was observed with the modified electrode using cyclic voltammetry. The synergetic effect of PB film with AuNPs has resulted in a linear range of 0.05 to 7,800 μM with a detection limit of 0.015 μM for H2O2 detection with the present electrode. Chronoamperometric studies recorded for the successive additions of H2O2 with the modified electrode showed an excellent linearity (R 2?=?0.9932) in the range of 4.8?×?10?8 to 7.4?×?10?8 M with a limit of detection of 1.4?×?10?8 M. Selective determination of H2O2 in presence of various interferents was successfully demonstrated. Human urine samples and stain remover solutions were also investigated for H2O2 content.  相似文献   

16.
《Analytical letters》2012,45(1):156-170
In this paper we have investigated the electrochemical activity of lanthanum chloride (La (III)) in the presence of calcon carboxylic acid (CCA) using a multi-walled carbon nano tube/carbon paste electrode (CNT/CPE). The peak current increases linearly with increasing of the La (III) concentration. For this purpose, a few electrochemical methods such as cyclic, differential pulse voltammetry, linear sweep and hydrodynamic voltammetry, and chronoamperometry were used. The results show that calcon carboxylic acid as a ligand was useful for determination of La (III) and was able to improve its sensitivity. Cyclic voltammetry was used for study of reduction reaction of La (III) at the surface of modified electrode. The electrochemical parameters for La (III) at the surface of CNT/CPE, such as diffusion coefficient (D/ cm2 s ?1 = 5.26 × 10?6), the electron transfer coefficient, (α = 0. 43), and the reduction rate constant, (k/ M s?1 = 2.33 (±0.015) × 102), were determined using voltammetry methods, which with the detection limit of La (III) by differential pulse voltammetry was found to be 1.3 nM. The combination of CCA with CNT as mediators in carbon paste electrode showed that this electrode is capable, sensitive, and simple to quantify La (III) in real samples with an average recovery of 97.64%.  相似文献   

17.
A carbon paste electrode modified with chelating resin (ammino-isopropylmercaptan-type cross-linked chelating resins) for the voltammetric determination of gold(III) was characterized by cyclic voltammetry. The gold(III) ion is accumulated on the surface of the modified electrode only by the chelating effect of the modifier in the carbon paste, without application of a potential. After exchange of the medium the accumulated amount of gold(III) is determined by voltammetry in a blank electrolyte solution. The response depends on both the concentration of gold and the accumulation time. For a 5-min preconcentration time, a linear calibration graph was obtained in the range 3 × 10?8-1 × 10?6 M and the detection limit was about 1 × 10?8 M. A combination of chemical and electrochemical renewal allows the use of a single modified electrode in multiple analytical determinations over several days. For ten preconcentration—determination—renewal cycles [2 × 10?7 M Au(III)], the response could be reproduced with 4.7% relative standard deviation. Many parameters such as the composition of the paste and pH influence the response of the measurement. Many other metal ions have no or little effect on the determination of gold. The procedure was applied to the determination of gold in minerals, copper and anode mud, with good results.  相似文献   

18.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

19.
A sensitive and selective electrochemical method for the determination of L-cysteine was developed using a modified carbon paste electrode (MCPE) with quinizarine. Cyclic voltammetry was used to investigate the redox properties of this modified electrode at various solution pH values and at various scan rates. The apparent charge transfer rate constant, ks and transfer coefficient for electron transfer between quinizarine and carbon paste electrode (CPE) were calculated as 2.76 s?1 and 0.6, respectively. This modified carbon paste electrode shows excellent electrocatalytic activity toward the oxidation of L-cysteine in a phosphate buffer solution (pH 7.0). The linear range of 1.0 × 10?6 to 1.0 × 10?3 M and a detection limit (3s) of 2.2 × 10?7 M were observed in pH 7.0 phosphate buffer solutions. In differential pulse voltammetry, the quinizarine modified carbon paste electrode (QMCPE) could separate the oxidation peak potentials of L-cysteine and tryptophan present in the same solution, though at the unmodified CPE the peak potentials were indistinguishable. This work introduces a simple and easy approach to selective detection of L-cysteine in the presence of tryptophan. Also, the modified electrode was employed for the determination of L-cysteine in the real samples such as serum of blood and acetylcysteine tablet.  相似文献   

20.
《Electroanalysis》2004,16(17):1413-1418
The in‐site functionalization of 4‐aminothiophenol (4‐ATP) self‐assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4′‐mercapto‐N‐phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well‐defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0×10?6?1.25×10?4 M and 8.0×10?6?1.3×10?4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3σ) for DA and AA were found to be 1.2×10?6 M and 2.4×10?6 M, respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号