首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iso-stearic acid, a short, stubby compound with branched, methylated tails has been shown to have high solubility in carbon dioxide. Tail solvation by carbon dioxide makes iso-stearic acid a good choice for use as a ligand to sterically stabilize metallic nanoparticles. Iso-stearic acid coated silver nanoparticles have been stably dispersed in carbon dioxide with hexane cosolvent. Neat carbon dioxide has successfully dispersed iso-stearic acid coated silver nanoparticles that had been deposited on either quartz or polystyrene surfaces. These results are the first reports of sterically stabilized nanoparticles in carbon dioxide without the use of any fluorinated compounds.  相似文献   

2.
Titanium dioxide (TiO2) is an inorganic compound used as sunscreen in cosmetic/pharmaceutical formulations as a way to prevent the skin cancer. In this work we have used surface modified titania nanoparticles obtained by thermo-reversible sol?Cgel transition showing transparency in the range of temperature typical for sunscreen use (between 20 and 45?°C). The goal of this work was to develop and characterize liquid crystalline cosmetic formulations containing surface modified titania nanoparticles. We have analyzed the citotoxicity of the nanoparticles, their zeta potential and the liquid crystalline phase behavior of the formulations. The violet crystal assay has shown no citotoxicity associated to the presence of surface modified groups on the two cell lines tested, human keratinocytes and fibroblasts, presenting more than 70% of cell viability for all analyzed nanoparticles. The zeta potential measurements revealed a negative charged surface for TiO2 nanoparticles at pH values in the range of 6.5?C7.0, preventing the aggregation and maintaining the final transparency of the liquid crystalline sunscreen formulations. The polarized light microscopy, associated to SAXS, have shown the presence of liquid crystalline phases both with and without TiO2 nanoparticles. The charged surface of TiO2 nanoparticles maintains the stability of the formulations and the liquid crystalline structure. This renders this system a good candidate for being used simultaneously as sunscreen and as controlled release system of anti cancer drugs.  相似文献   

3.
The preparation of microstructured Au/TiO2 model catalysts as a first step toward micrometer-scale parallel studies on model catalysts and toward studies of mesoscopic effects in catalytic reactions was investigated by atomic force microscopy and X-ray photoelectron spectroscopy. The model systems, which consist of micrometer-size active areas covered with Au nanoparticles that are separated by similarly sized inactive areas free of Au particles, are fabricated by combining optical lithography methods for microstructuring and ultrahigh vacuum evaporation for Au nanoparticle deposition and by applying suitable cleaning steps. It is demonstrated that practically perfect microstructures with Au nanoparticles of catalytically relevant sizes (2-3-nm diameter) on a clean TiO2 substrate can be produced this way and that the processing steps do not affect the deposited Au nanoparticles, neither in size nor in lateral distribution.  相似文献   

4.
Titanium dioxide (TiO(2)) nanoparticles were synthesized by controlled hydrolysis of titanium alkoxide in reverse micelles in a hydrocarbon solvent. Upon annealing in situ in the presence of the micelles at temperatures considerably lower than those required for the traditional calcination treatment in the solid state, the TiO(2) nanoparticles became highly crystalline but still maintained the same physical parameters and remained in a stable suspension. Thus, the method has allowed the preparation of crystalline TiO(2) nanoparticles that are monodispersed in the same way as they are initially produced in the microemulsion. Effects of the fluid properties on the crystallization of nanoparticles are discussed.  相似文献   

5.
6.
The adjustable solvent properties, vanishingly low surface tensions, and environmentally green characteristics of supercritical carbon dioxide present certain advantages in nanoparticles synthesis and processing. Unfortunately, most current techniques employed to synthesize and disperse nanoparticles in carbon dioxide use environmentally persistent fluorinated compounds as metal precursors and/or stabilizing ligands. This paper illustrates a one-step process for synthesis and stabilization of silver nanoparticles in carbon dioxide using only fluorine-free compounds. Isostearic acid coated silver nanoaparticles were formed and stably dispersed through arrested precipitation. Silver bis(3,5,5-trimethyl-1-hexyl)sulfosuccinate (Ag-AOT-TMH) was reduced in the presence of isostearic acid as a capping ligand in carbon dioxide solvent to form silver nanoparticles. The addition of cyclohexane as cosolvent or an increase in carbon dioxide solvent density enhances the dispersibility of the particles due to an increase in solvent strength. The dispersibility of the isostearic acid capped silver nanoparticles diminished with time until a stable dispersion was achieved due to the precipitation of a fraction of particle sizes too large to be stabilized by the solvent medium, thereby leaving a smaller size fraction of nanoparticles stably dispersed in the CO2 mixtures. This paper presents the one-step synthesis and stabilization of metallic nanoparticles in neat carbon dioxide without the aid of any fluorinated compounds.  相似文献   

7.
Inorganic ultraviolet filters such as titanium dioxide (TiO2), safe to use on healthy skin, are often applied on compromised and irradiated skin. The aim of this study was to evaluate in vitro the cutaneous penetration of TiO2 nanoparticles (≥ 20 nm primary size), included in a sunscreen, in intact, damaged, irradiated, and damaged/irradiated pigskin. Cutaneous penetration and localization of TiO2 after a 24‐h sunscreen application were investigated quantitatively using inductively coupled plasma‐mass spectrometry, and qualitatively using transmission electron microscopy (TEM). Elemental identity of the nanoparticles was evaluated by TEM‐coupled Energy Dispersive X‐ray analysis (TEM‐EDX). In intact and damaged/irradiated skins, 102.35 ± 4.20% and 102.84 ± 5.67% of the titanium deposited, respectively, were found at the surface and stratum corneum (SC), whereas only 0.19 ± 0.15% and 0.39 ± 0.39% were found in the viable epidermis and dermis and no titanium was detected in the receptor fluid. TEM‐EDX analysis confirmed the presence of titanium in the aggregates formed by TiO2 at the SC surface, as already characterized in the sunscreen formulation. TiO2 nanoparticles included in a sunscreen thus remain in the uppermost layers of the SC, whether in intact skin or in compromised and/or skin exposed to simulated solar radiation.  相似文献   

8.
Nowadays, introducing self‐cleaning properties on various fabrics under daylight irradiation for automotive and upholstery application is in a central point of research. This can be achieved by application of metal‐doped TiO2 nano particles on the textile fabrics. Here, alkali hydrolysis of polyester fabric has been carried out along with synthesis of Cu2O/TiO2 nanoparticles in a single‐step process by using sonochemical technique. CuSO4.5H2O was used as a source of copper in the presence of glucose as reducing and stabilizing agent. Moreover, central composite design based on response surface methodology (RSM) was used to determine the role of variables (CuSO4.5H2O, glucose and pH) and their effects on the self‐cleaning properties and weight of the fabric. The self‐cleaning property was investigated by degradation of Methylene blue on the surface of the treated fabrics under daylight. Further, the tensile properties, colorimetric measurement, and washing fastness of the treated fabric produced in the optimum conditions were investigated. The morphology of Cu2O/TiO2 nanoparticles was examined using X‐ray diffraction and field emission scanning electron microscopy (FESEM). The new polyester fabric obtained through in situ synthesis of Cu2O/TiO2 nanoparticles can be used as a desirable stable fabric with high tensile strength and visible‐light self‐cleaning properties.  相似文献   

9.
Titanium dioxide nanoparticles were prepared by a electrochemical reduction method using parameters such as current density, solvent polarity, distance between electrodes, and concentration of stabilizers to control the size of the nanoparticles. The nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and their catalytic performance was tested for the synthesis of a series of 4-aryldiene-2-phenyl-5(4)-oxazolones from the cyclodehydration and condensation of the respective aldehyde, hippuric acid and acetic anhydride. Easy availability, reusability and eco-friendliness were some prominent features of the nanocrystalline titanium dioxide catalyst.  相似文献   

10.
Convenient and integration fabrication process is a key issue for the application of functional nanofibers. A surface functionalization method was developed based on coaxial electrospinning to produce ultraviolet(UV) protection nanofibers. The titanium dioxide(TiO2) nanoparticles suspension was delivered through the shell channel of the coaxial spinneret, by which the aggregation of TiO2 nanoparticles was overcome and the distribution uniformity on the surface of polyethylene oxide(PEO) nanofiber was obtained. With the content of TiO2 increasing from 0 to 3%(mass fraction), the average diameter of nanofibers increased from (380±30) nm to (480±100) nm. The surface functionalization can be realized during the electrospinning process to gain PEO/TiO2 composite nanofibers directly. The uniform distribution of TiO2 nanoparticles on the surface of nanofibers enhanced the UV absorption and resistance performance. The maximum UV protection factor(UPF) value of composite nanofibers reaches 2751. This work presented a novel surface-functionalized way for the preparation of composite nanofiber, which has great application potential in the field of micro/nano system integration fabrication.  相似文献   

11.
A novel strategy to synthesize hybrid metal–polymer nanocomposites has been achieved based on in situ free radical suspension and bulk polymerization techniques. An organometallic precursor complex is dissolved in a liquid monomer phase prior to polymerization, where upon the precursor molecules are immobilized inside the polymer matrix during its formation. In a separate step, metal nanoparticles are then formed by H2-assisted reduction of the precursor in the polymer product in supercritical carbon dioxide (scCO2). The synthesized nanocomposites were characterized by GPC, TGA, SEM and TEM. It is shown that the metal nanoparticles are uniformly distributed inside the polymer matrix and the inclusion of the metal precursor has no significant influence on the polymerization process. The current work represents a simple and universal way to prepare a variety of metal–polymer nanocomposite functional materials.  相似文献   

12.
《Analytical letters》2012,45(10):1772-1782
Cyanide is highly toxic, and although various approaches have been employed for its remediation, these methods do not have the required performance. This report describes the synthesis of titanium dioxide nanoparticles with maximum photocatalytic properties and their application for the treatment of cyanide in wastewater. Three types of crystalline titanium nanoparticles were synthesized: anatase, rutile, and a biphasic mix of rutile and anatase. The phase and microscopic properties were characterized by X-ray diffraction and scanning electron microscopy. The specific surfaces of the particles were determined, and their photocatalytic activity was studied under the ultraviolet irradiation for cyanide degradation. The results indicate that an increase in sulfate ion leads to changes in the phase ratios of rutile to anatase. The diameter of the nanoparticles was between 18 and 22 nm, and they displayed high photocatalytic properties. The biphasic form of the titanium dioxide nanoparticles demonstrated the highest removal of cyanide. Complete degradation of cyanide was observed in a pilot scale experiment.  相似文献   

13.
Silicium dioxide nanoparticles of about 20 nm diameter containing azido groups at the surface were prepared by emulsion copolymerization of trimethoxymethylsilane and (3-azidopropyl)triethoxysilane and studied by transmission electron microscopy (TEM). A photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)(3)(tpm)](+) (tpm = tris(pyrazolyl)methane) containing an alkyne-functionalized tpm ligand was covalently linked to the silicium dioxide nanoparticles via the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC "click" reaction). The surface functionalization of the particles with azido groups and manganese CORMs was analyzed by UV-vis, IR, (1)H and (13)C CP-MAS NMR spectroscopies as well as energy-dispersive X-ray spectroscopy (EDX). The myoglobin assay was used to demonstrate that the CORM-functionalized nanoparticles have photoinducible CO-release properties very similar to the free complex. In the future, such functionalized silicium dioxide nanoparticles might be utilized as delivery agents for CORMs in solid tumors.  相似文献   

14.
Synthesis of bi-functional silica particles by a simple wet chemical method is described where the mixture of ultra fine nanoparticles (1-3 nm) of titania and silver were attached on the silica particle surface in a controlled way to form a core-shell structure. The silica surface showed efficient bi-functional activity of photo-catalytically self cleaning and antibacterial activity due to nanotitania and nanosilver mutually benefiting each other's function. The optimum silver concentration was found where extremely small silver nanoparticles are formed and the total composite particle remains white in color. This is an important property in view of certain applications such as antibacterial textiles where the original fabric color has to be retained even after applying the nanosilver on it. The particles were characterized at each step of the synthesis by X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron energy loss spectroscopy. Bi-functional silica particles showed accelerated photocatalytic degradation of methylene blue as well as enhanced antibacterial property when tested as such particles and textiles coated with these bi-functional silica particles even at lower silver concentration.  相似文献   

15.
Using peroxostannate as a precursor, a composite material based on tin dioxide and carbon black was obtained, in which tin dioxide forms a coating on the surface of carbon black nanoparticles. The synthesized material was characterized by electron microscopy and X-ray powder diffraction analysis, and also the electrochemical characteristics of this material as an anode material for lithium-ion batteries were studied. The material demonstrates good stability and rate performance, which is indicative of the efficiency of the peroxide method for producing promising inexpensive anode materials based on tin dioxide and carbon black.  相似文献   

16.
Nanoparticles effectively deliver therapeutic agent by penetrating into the skin. Indomethacin (IM) and coumarin-6 were loaded in PLGA nanoparticles with an average diameter of 100 nm. IM and coumarin-6 were chosen as a model drug and as a fluorescent marker, respectively. The surfaces of the nanoparticles were negatively charged. Permeability of IM-loaded PLGA nanoparticles through rat skin was studied. Higher amount of IM was delivered through skin when IM was loaded in nanoparticles than IM was free molecules. Also, iontophoresis was applied to enhance the permeability of nanoparticles. When iontophoresis with 3 V/cm was applied, permeability of IM was much higher than that obtained by simple diffusion of nanoparticles through skin. The combination of charged nanoparticle system with iontophoresis is useful for effective transdermal delivery of therapeutic agents.  相似文献   

17.
We have performed high-pressure synchrotron X-ray diffraction experiments on nanoparticles of pure tin dioxide (particle size ∼30 nm) and 10 mol % Fe-doped tin dioxide (particle size ∼18 nm). The structural behavior of undoped tin dioxide nanoparticles has been studied up to 32 GPa, while the Fe-doped tin dioxide nanoparticles have been studied only up to 19 GPa. We have found that both samples present at ∼13 GPa a second-order structural phase transition from the ambient pressure tetragonal rutile-type structure (P42/mnm) to an orthorhombic CaCl2-type structure (space group Pnnm). No phase coexistence was observed for this transition. Additionally, pure SnO2 presents a phase transition to a cubic structure at ∼24 GPa. The evolution of the lattice parameters with pressure and the room-temperature equations of state are reported for the different phases. The reported results suggest that the partial substitution of Sn by Fe induces an enhancement of the bulk modulus of SnO2. Results are compared with previous studies on bulk and nanocrystalline SnO2. The effects of pressure on Sn-O bonds are also analyzed.  相似文献   

18.
The method of synthesis of nanoscale titanium dioxide from organic precursor using supercritical fluid technology was suggested. It was demonstrated that the obtained product consists of amorphous particles with a narrow size distribution. It possesses a high porosity and a large value of specific surface area. The effect of temperature, pressure, and concentration of the titanium(IV) isopropoxide precursor on the average size of TiO2 nanoparticles has been studied. The method allows preparation of titanium dioxide free from precursor compounds. Complex physico-chemical study of the obtained product has been performed.  相似文献   

19.
The consumption of titanium dioxide in today's world is on the increase. As the most popular nano substance, TiO2 is used in various industries notably in the textile industry. More and more recently, through a synergistic combination of photocatalytic features of nanoparticles, fabrics with novel properties are produced. Self-cleaning and stability against UV rays as well as chemical media, to name but a few, are among new prominent properties, obtained on textiles. A common subject reported in most studies has been the diverse approaches to immobilize the nanoparticles on the surface of fabrics. Wool is among common textile materials that have undergone numerous processes to be modified. This review intends to bring to light different aspects of application of nano titanium dioxide in the textile industry especially on wool, and also presents a concise overview on the rigorous pieces of research conducted in this realm.  相似文献   

20.
We have investigated the processes occurring within titanium dioxide powders heated and modified by silicon dioxide nanoparticles at 150, 400, and 800 °C. It has been figured out that the mentioned modification stipulates the increase in the powders’ radiation resistance. While investigating, we employed methods of the near-/mid-infrared regions spectrophotometry, derivatography, and mass spectrometry. The research results show that the increase in the radiation resistance at the heating is stipulated by a number of factors, namely (1) the desorption of the physically/chemically bound gases, (2) upfilling of the released bonds with the oxygen molecules, and (3) the improvement of titanium dioxide stoichiometry on the surface. The after-modification radiation resistance increases excessively (as opposed to the heating) due to the fact that the electron–hole pairs relaxate on the nanoparticles, which precipitate onto the surface of titanium dioxide powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号