首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
Chiral stationary phases (CSPs) for high-performance liquid chromatographic (HPLC) have been prepared by coating silica gel with cellulose tribenzoate or cellulose trisphenylcarbamate. The effect of chiral additives on preparation of the CSPs was studied with (+)-l-mandelic acid, (−)-2-phenyl-1-propanol, (+)-1-phenyl-1,2-ethanediol and (−)-1-(1-naphthyl)ethanol as chiral additives for cellulose tribenzoate and (−)-2-phenyl-1-propanol and (+)-phenylsuccinic acid as chiral additives for cellulose trisphenylcarbamate. The results showed that chiral recognition by these stationary phases was increased in comparison with the original CSPs, especially the resolution (R S) obtained. The method can be used to improve the efficiency of enantiomer separation by silica gel stationary phases coated with polymers.  相似文献   

2.
在纤维素衍生物类手性柱上分离托品酸对映体   总被引:5,自引:0,他引:5  
以乙醇-水为流动相,用纤维素-三(苯甲酯)(CTB)作为手性固定相对外消旋体托体品酸进行了高效液相色谱手性分离,考察了不同比例的乙醇-水流动相,不同流速以及用不同醇类酯对托品酸酯在手性色谱柱上的色谱行为,实验表明,流动相中水的比例,流速以及酯化所用醇类均对托品酸酯衍生物分离有很大影响,以动相为乙醇-水(95:5)流速为0.1mL/min的色谱体系,使托品酸乙酯在CTB柱上得到基线分离,对托品酸乙酯在CTB手性固定相上反相手性识别机理进行了讨论.  相似文献   

3.
Resolution of enantiomers by HPLC on cellulose derivatives   总被引:4,自引:0,他引:4  
Ichida  A.  Shibata  T.  Okamoto  I.  Yuki  Y.  Namikoshi  H.  Toga  Y. 《Chromatographia》1984,19(1):280-284
Summary Various polysaccharide derivatives, particularly cellulose derivatives, were synthesized and used as chiral stationary phases for optical resolution by HPLC after being adsorbed on macroporous silica gel. Cellulose triacetate (CTA-II), which was synthesized under homogeneous conditions, showed a chiral recognition ability for many racemates. Other cellulose derivatives such as cellulose tribenzoate (OB), cellulose-trisphenylcarbamate (OC), cellulose tribenzyl ether (OE), and cellulose tricinnamate (OK) also showed unique chiral recognition. Among other polysaccharide derivatives, curdlan triacetate was also exhibited an effective chiral recognition. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

4.
《Analytical letters》2012,45(1):173-182
Abstract

In this work, we present the first separation of enantiomers in gas chromatography (GC) using a fused‐silica capillary column containing cellulose triacetate, cellulose triphenylcarbamate, or cellulose tris(3,5‐dimethylphenylcarbamate) as the new chiral stationary phase. The separated solutes included alcohols, amine, ketone, ether, ester, and amino acid. Their column efficiency, polarity, and chiral selectivity were studied. The retention mechanism was discussed. The results showed that those derivatives had relatively high chiral recognition abilities and can be used as the chiral stationary phases in GC.  相似文献   

5.
In this paper new cellulose tribenzoate/gypsum layers in the ratio up to 8/1 (w/w) were investigated for the chiral resolution of closely related aromatic ketones (e.g. tetralones and indanones), alcohols (e.g. benzhydrols) and racemates or enantiomers of other compound classes (e.g. dinitrophenyl amino acids). Among 22 investigated compounds, 16 racemates were baseline or partially resolved by eluting with methanol or 2-propanol/water mixtures on 4/1 (w/w) layers. The best results were compared with those achieved on microcrystalline cellulose triacetate plates and on cellulose tribenzoate columns. The study of structurally related solutes allowed us to increase the knowledge of the retention and resolution mechanisms on this chiral stationary phase and to highlight the role of π-π interactions between cellulose tribenzoate and solutes with different substituents on the aromatic ring. However, some results were unexpected and confirmed the complexity of enantioseparation mechanisms, thus evidencing the importance of experimental tests. Densitometric scan in the visible region of cellulose tribenzoate/gypsum plates after their exposure to iodine vapours allowed us to successfully perform the quantitative analysis of the investigated compounds, thus overcoming the detection problems normally encountered with this stationary phase.  相似文献   

6.
The general rate model of chromatography can be coupled with the generalized Maxwell-Stefan equation that describes the surface diffusion flux. The resulting model is useful to describe the behavior of two enantiomers during their separation on chiral phases, cases in which the mass transfer kinetics is known to be sluggish. A case in point is the modeling of the elution profiles of the racemic mixture of the two enantiomers of 1-phenyl-1-propanol on cellulose tribenzoate coated on silica, a popular chiral stationary phase. The competitive equilibrium isotherm behavior of the two enantiomers on the chiral stationary phase was described using the competitive Tóth isotherm model. An excellent agreement between the experimental and the calculated profiles was observed in the whole range of experimental conditions investigated, at low and high column loadings.  相似文献   

7.
高效液相色谱中的手性两相协同作用   总被引:4,自引:0,他引:4  
孟磊  李方楼  袁黎明 《色谱》2004,22(2):124-127
在高效液相色谱中,以纤维素三苯基甲酸酯、纤维素三苯基氨基甲酸酯为手性固定相,以正己烷-异丙醇(体积比为9∶1)为流动相,柱温25 ℃,分别以β-环糊精(β-CD)、2,6-二甲基-β-环糊精(DM-β-CD)、2,3,6-三甲基-β-环糊精(TM-β-CD)为流动相添加剂,分离了DL-色氨酸和DL-苯丙氨酸两种手性化合物,考察是否存在手性固定相和手性添加剂的协同作用。实验结果表明,在流动相中添加β-CD或DM-β-CD至饱和,协同作用不明显;在流动相中添加少量TM-β-CD(即浓度小于0.60 mmol/  相似文献   

8.
A new chiral stationary phase of 3,5-dimethylphenylcarbamates of cellulose chemically bonded to 3-aminopropyl silica gel was prepared, which may be used with a wide range of solvents including standard and non-standard ones. Several racemic indole derivatives have been resolved using standard and non-standard solvents on the immobilized chiral column (15 cm × 0.46 cm) at a flow rate of 1.0 mL/min or 0.5 mL/min with a UV detection at 230 nm. Separation of indole derivatives on immobilized and coated chiral stationary phases (CSP) in HPLC using a mixture of hexane/2-propanol as mobile phase was compared. The resolution factors for immobilized and coated chiral column were 0.57–2.02 and 0.61–4.03, respectively. It was found that both coated and immbolized chiral stationary phases were suitable for the separation of indole derivatives; however, the coated CSP possesses a higher resolving power than the immobilized one. The article is published in the original.  相似文献   

9.
Separation of the enantiomers of several trans arylcyclopropanecarboxylic acids and their amide and nitrile derivatives has been systematically studied on three polysaccharide HPLC stationary phases, amylose tris-(3,5-dimethylphenylcarbamate), cellulose tris-(3,5-dimethylphenylcarbamate), and cellulose tris-(4-methylbenzoate). Enantiomer recognition by the chiral stationary phases is discussed in terms of the type of functional group, electronic and steric effects of substituents on the analytes, the structure of the chiral stationary phase, and mobile phase composition.  相似文献   

10.
The effect of the steric structure and concentration of the mobile phase modifier on the retention (kappa') and stereoselectivity (alpha) of a series of enantiomeric amides has been investigated. The amides were chromatographed on a commercially available cellulose tribenzoate chiral stationary phase (CSP) using mobile phases composed of hexane and two homologous series of alcohols: methanol, ethanol, 1-propanol and 2-propanol, 2-butanol, 2-pentanol, 2-hexanol. The results of the study indicate that the alcoholic mobile phase modifiers compete with the solutes for achiral and chiral binding sites and that the steric bulk around the hydroxyl moiety of the modifier plays a role in this competition. Increased steric bulk tends to result in increased kappa' and alpha. However, the results also suggest that the effect of the alcoholic mobile phase modifiers on stereoselectivity may also be due to binding to achiral sites near or at the chiral cavities of the CSP which alters the steric environment of these cavities.  相似文献   

11.
Abstract

A method for the thin layer chromatographic (TLC) separation of enantiomers and diastereomers involving the use of chiral ion interaction agents is described. Several aromatic amino alcohols were resolved by TLC on diol and/or high performance silica gel plates using a mobile phase containing (1R)-(-)- ammonium-10-camphorsulfonate or N-benzoxycarbonyl-glycyl-L-proline (ZGP). Many of these chiral aromatic amino alcohols are of pharmacological importance as α- and β-adrenergic blockers, adrenergic compounds, and anti-glaucoma agents. A comparison was made between various N-CBZ-amino acid derivatives as chiral counter ions/chiral mobile phase additives (CMAs). These separations could not be achieved on other normal phase TLC stationary phases including microcrystalline cellulose, alumina and ordinary silica gel plates.  相似文献   

12.
Highly N‐deacetylated chitosan was chosen as a natural chiral origin for the synthesis of the selectors of chiral stationary phases. Therefore, chitosan was firstly acylated by various alkyl chloroformates yielding chitosan alkoxyformamides, and then these resulting products were further derivatized with 4‐methylphenyl isocyanate to afford chitosan bis(4‐methylphenylcarbamate)‐(alkoxyformamide). A series of chiral stationary phases was prepared by coating these derivatives on 3‐aminopropyl silica gel. The content of the derivatives on the chiral stationary phases was nearly 20% by weight. The chiral stationary phases prepared from chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(isopropoxyformamide) comparatively showed better enantioseparation capability than those prepared from chitosan bis(4‐methylphenylcarbamate)‐(n‐pentoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(benzoxyformamide). The tolerance against organic solvents of the chiral stationary phase of chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) was investigated, and the results revealed that this phase can work in 100% ethyl acetate and 100% chloroform mobile phases. Because as‐synthesized chiral selectors did not dissolve in many common organic solvents, the corresponding chiral stationary phases can be utilized in a wider range of mobile phases in comparison with conventional coating type chiral stationary phases of cellulose and amylose derivatives.  相似文献   

13.
Abstract

A chiral separation of N(+)-and S(-)-benzyl-3-tetrahydrofuroate (I) and p-nitrobenzyl-3-tetrahydrofuroate (II) using a Chiralcel OB© (cellulose tribenzoate) column with a hexane/2-propanol (60:40 v/v) mobile phase is described. Enantiomeric purity of R(+)-I was evaluated using the same chromatographic conditions. I was also separated using a Chiralspher© (polyamides bonded to silica gel) column with an ethanol/distilled water (50:50 v/v) mobile phase.  相似文献   

14.
Twenty different tris(phenylcarbamate)s of cellulose were synthesized and evaluated as chiral stationary phases for HPLC. Optical resolving power of the tris(phenylcarbamate)s depends on the substituents introduced on the phenyl groups. Optical resolving abilities of amylose tris(phenylcarbamate)s were also evaluated. In most cases, either cellulose tris(3,5-dimethylphenylcarbamate) or amylose tris(3,5-dimethylphenylcarbamate) exhibited the highest optical resolving ability. Aralkylcarba-mates such as benzyl- and 1-phenylethylcarbamates of cellulose and amylose were also tested as chiral stationary phases. (S)-1-Phenylethylcarbamate of amylose showed a high optical resolving power.  相似文献   

15.
A series of cellulose benzoates with different degrees of substitution (DS) were prepared by aminolysis under homogeneous conditions. Using them as a stationary phase, the dependence of the chromatographic chiral recognition of cellulose benzoate (CB) on its DS was studied under normal phase conditions. For most enantiomeric pairs, chiral recognition decreased along with the decrease in DS. However, some enantiomeric pairs were resolved only by CBs carrying unsubstituted hydroxyl groups. Many of the compounds were quite strongly retained by cellulose benzoate with a DS of 2.8. A study of the retention behaviors of simple achiral compounds led us to the conclusion that the change in the retention behaviors by introducing free hydroxyl groups into tribenzoate is not caused by hydrogen bonding including the hydroxyl groups, but by a specific unidentified change.  相似文献   

16.

A set of 31 structurally different chiral pharmaceutical compounds was used as model analytes for investigation of the enantioselective potential of two immobilized polysaccharide-based chiral stationary phases under normal and reversed phase separation conditions. These chiral stationary phases differed in the polymeric backbone, amylose or cellulose, but possessed the same derivatization functionality. The results showed that the tris(3,5-dimethylphenylcarbamate) of amylose and cellulose have very broad, and often complementary, enantiorecognition abilities. In general, normal phase separation mode seemed to be more advantageous for separation of the majority of studied pharmaceuticals no matter if amylose- or cellulose-based columns were used. However, in certain cases the reversed phase separation system yielded better results. The combination of these two immobilized chiral stationary phases offers a powerful tool for enantioseparation of different types of pharmaceuticals in the normal and/or reversed phase mode.

  相似文献   

17.
The liquid Chromatographic resolution of the racemic cardiovascular drugs naftopidil and bufuralol to their corresponding enantiomers was achieved on cellulose tris-(3,5-dimethylphenyl carbamate) chiral stationary phase known as Chiralcel OD. The chiral recognition mechanism(s) involved between the chiral stationary phase and these drugs, which include hydrogen bonding, intercalative interactions, and steric interactions, among other factors, were discussed.  相似文献   

18.
《Analytical letters》2012,45(7):1451-1461
Abstract

Cellulose and cellulose derivatives are biopolymers that are often used as stationary phases for the separation of enantiomers. Describing the mechanism of such separations is a difficult task due to the complexity of these phases. In the present study, direct enantiomeric resolution of ethofumesate has been achieved, using hexane as the mobile phase with various alcoholic modifiers on cellulose tri(3,5‐dimethylphenylcarbamate) chiral stationary phase (CDMPC CSP). The influence of the mobile phase composition and the column temperature on the chiral separation was studied. It was found that at a constant temperature and within a certain range of alcohol modifier concentration, the conformation of the polymeric phase, and the selective adsorption sites were not affected by alcohol modifier concentration. The type and the concentration of the alcoholic modifiers influenced the retention factor and the separation factor. Ethofumesate gained the best enantioseparation using sec‐butanol as alcoholic modifier at 25°C with α‐value 1.70. And the separation factor decreased with the increase of the column temperature. The van't Hoff plots were linear (R 2>0.96) for ethofumesate from 25°C to 50°C. That showed the enantioselective interactions do not change over the temperature range studied. Furthermore the values of ΔH° and ΔS° were both negative, which indicated an enthalpy‐driven separation. And the possible chiral recognition mechanism of the analyte and CDMPC was discussed. It was found that hydrogen bonding plays an important role on enantioseparation of CDMPC CSP. The inclusion and fitness of solute shape in the chiral cavity significantly contributed to the enantioseparation of solute.  相似文献   

19.
Analytical high-performance liquid chromatographic enantioseparation of 1-(4-chlorobenzhydryl) piperazine benzamide derivatives was accomplished on different chiral stationary phases. The enantiomers of the compounds were resolved by normal-phase chromatography on silica-based amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD-H), cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and cellulose tris(4-methylbenzoate) (Chiralcel OJ) columns with mobile phases consisting of mixtures of n-hexane and ethanol in different proportions (90: 10, 80: 20). The mobile phase and the chiral stationary phase were varied to achieve the best resolution. The effect of the concentration of ethanol in the mobile phase was studied. The resolution obtained on the three columns was significant.  相似文献   

20.
制备了涂覆型和键合型纤维素-(3, 5-二甲基苯基氨基甲酸酯)固定相, 分别在制备的纤维素手性固定相上成功地拆分了一种手性中间体, 通过考察流动相中的改性剂(醇、四氢呋喃、三氯甲烷)对手性拆分的影响, 优化了手性中间体在两种手性固定相上的色谱分离条件, 并比较了手性中间体在涂覆和键合型纤维素手性固定相上的拆分. 结果表明, 涂覆型和键合型手性固定相对这种手性中间体均有较好的拆分效果, 在150 mm的色谱柱上, 这两种手性固定相对这种手性中间体的拆分能力相差不大, 但键合型固定相上可选择的流动相范围更广.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号