首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Shahrokhian S  Rastgar S 《The Analyst》2012,137(11):2706-2715
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.  相似文献   

2.
Po Wang  Xue Huang 《Talanta》2007,73(3):431-437
A novel electrochemical sensor has been constructed by use of a glassy carbon electrode (GCE) coated with a gold nanoparticle/choline (GNP/Ch). Electrochemical impedance spectroscopy (EIS), field emission scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the properties of this modified electrode. It was demonstrated that choline was covalently bounded on the surface of glassy carbon electrode, and deposited gold nanoparticles with average size of about 100 nm uniformly distributed on the surface of Ch. Moreover, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with obviously reduction of overpotentials. For the ternary mixture containing DA, AA and UA, these three compounds can be well separated from each other, allowing simultaneously determination of DA and UA under coexistence of AA. The proposed method can be applied to detect DA and UA in real samples with satisfactory results.  相似文献   

3.
An electrochemical sensor based on a polyfurfural-electrochemically reduced graphene oxide modified glassy carbon electrode has been developed for the sensitive and rapid determination of nitrofurazone. The morphologies and properties of the sensor were characterized by electrochemical impedance spectroscopy, scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry (DPV). In pH 7.0 Britton–Robinson buffer solution, the as-prepared polyfurfural-electrochemically reduced graphene oxide modified glassy carbon electrode shows excellent electrocatalytic performance for the electrochemical reduction of nitrofurazone, and the reduction peak current is about 9.45, 1.31, and 1.25 times higher than that of the bare glassy carbon electrode, polyfurfural modified glassy carbon electrode, and electrochemically reduced graphene oxide modified glassy carbon electrode, respectively. The DPV determination of nitrofurazone indicates that the linear range and detection limit of nitrofurazone are 1–50 and 0.25?µmol/dm3, respectively. In addition, this sensor exhibits high selectivity, reproducibility, stability, and also was successfully used to directly determine nitrofurazone in the commercial antibacterial lotion with comparative sensitivity to high-performance liquid chromatography, showing its promising application prospects.  相似文献   

4.
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.  相似文献   

5.
尤文钰  杨铁金 《化学通报》2016,79(11):1035-1040
本文建立一种新型的青蒿素传感器。首先,在玻碳电极上滴涂氧化石墨,通过电化学方法将氧化石墨还原为石墨烯,然后,在石墨烯上沉积纳米银得到石墨烯/纳米银修饰电极,它作为检测青蒿素的电化学传感器。用此电极对青蒿素进行测定,并通过循环伏安法、差分脉冲伏安法、交流阻抗法等研究其电化学行为。该修饰电极在测定青蒿素溶液时,表现出较正的还原电位和较大的峰电流等优势;对其实验条件如电解质溶液的p H、应用电势等进行了探查,该电化学传感器在青蒿素溶液浓度范围为1.0×10-8~3.0×10-5mol/L时与其还原峰电流呈现良好的线性关系,最低检出限为1.2×10-9mol/L(S/N=3)。此外,对该传感器的稳定性和重现性等也进行了研究,获得令人满意的结果。  相似文献   

6.
建立了快速测定盐酸金霉素(CTC)的方法。通过NaBH4还原法制备纳米银(AgNPs)溶胶,并利用X射线衍射和紫外-可见光谱进行表征。将制备好的AgNPs滴涂到玻碳电极表面制备修饰电极(AgNPs/GCE),研究了CTC在AgNPs/GCE上的电化学行为及伏安法测定,优化了缓冲溶液和pH等检测条件。结果表明,CTC在pH 3.3的柠檬酸-NaOH-HCl缓冲溶液中检测效果最佳。CTC在AgNPs/GCE上发生2个电子和2个质子的不可逆电化学氧化反应,且反应受吸附控制。最佳条件下,CTC的氧化峰电流与其浓度呈现良好的线性关系,线性范围为0.5~100μmol/L,检出限为0.14μmol/L。该修饰电极可用于河水样品检测。  相似文献   

7.
A novel electrochemical sensor based on nanocellulose‐carbon nanoparticles (NC‐CNPs) nanocomposite film modified glassy carbon electrode (GCE) is developed for the analysis of metoclopramide (MCP). Atomic force microscopy, scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the roughness, surface morphology and performance of the deposited modifier film on GCE. SEM image demonstrated that modifier nanoparticles are uniformly deposited on GCE, with an average size of less than 50 nm. The electrochemical behavior of MCP and its oxidation product is studied using linear sweep and cyclic voltammetry over a wide pH range on NC‐CNPs modified glassy carbon electrode. The results revealed that the oxidation of MCP is an irreversible and pH‐dependent process that proceeds in an adsorption‐controlled mechanism and results in the formation of a main oxidation product, which adsorbs on the surface of NC‐CNPs/ GCE. The modified electrode showed a distinctive anodic response towards MCP with a considerable enhancement (49 fold) compared to the bare GCE. Under the optimized conditions, the modified electrode exhibited a wide linear dynamic range of 0.06–2.00 µM with a detection limit of 6 nM for the voltammetric determination of MCP. The prepared modified electrode showed several advantages such as simple preparation method, high stability, reproducibility, and repetitive usability. The modified electrode is successfully applied for the accurate determination of trace amounts of MCP in pharmaceutical and clinical preparations.  相似文献   

8.
《Analytical letters》2012,45(14):2370-2383
Carbon nanotubes have been intensively studied for their diverse applications but are insoluble in water. In this paper, 3,4,9,10-perylene tetracarboxylic acid noncovalently modified multiwalled carbon nanotubes were prepared by a facile approach and applied successfully for electrochemical determination of 2-aminonaphthalene. Infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and electrochemical methods were used to characterize the hybridized nanotubes. The results reveal that the hybrids exhibit high dispersibility in water, and a glassy carbon electrode modified by the hybrids displayed a higher electrochemical response toward 2-aminonaphthalene than bare glassy carbon and multiwalled carbon nanotube–glassy carbon electrodes with a linear dynamic range of 15.0–500.0 nM and a detection limit of 4.5 nM. The modified hybrid electrode was successfully applied for the determination of 2-aminonaphthalene in water.  相似文献   

9.
《Analytical letters》2012,45(9):1454-1465
A novel electrochemical sensor for formaldehyde determination was fabricated by using the Pd-graphene nanohybrides. Pd-graphene nanohybrids were prepared via a concise chemical reduction method. Raman spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used for the characterization of structure and morphology of the nanohybrids. The result showed that Pd nanoparticles were uniformly dispersed and were well-separated on the graphene sheets. The Pd-graphene nanohybrids were dissolved in Nafion and modified on the glassy carbon electrode to fabricate the electrochemical sensor. This proposed electrochemical sensor performed excellent electrocatalytic activity toward formaldehyde oxidation in alkaline medium. The peak current was linearly related to the formaldehyde concentration in the range of 7.75 µM to 62.0 µM with the detection limit of 3.15 µM. The highly sensitive and robust graphene based Pd nanohybrids sensor offers a promising and practical tool for formaldehyde sensing and chemical analysis.  相似文献   

10.
以水合肼为还原剂,采用均相还原法制备还原氧化石墨烯-多壁碳纳米管复合材料(rGO-MWCNTs),通过滴涂法将其修饰到玻碳电极(GCE)表面.以此复合材料为载体,采用电化学方法制备了金纳米粒子-还原氧化石墨烯-多壁碳纳米管复合膜修饰电极(AuNPs-rGO-MWCNTs/GCE).通过扫描电镜(SEM)、EDS能谱技术和电化学方法对此电极进行了表征.研究了双酚A在修饰电极上的电化学行为.结果表明,此电极对双酚A的电极过程具有良好的电化学活性,在0.10 mol/L PBS溶液(pH 7.0)中,微分脉冲伏安法测定双酚A的线性范围为5.0 × 10-9~1.0 × 10-7 mol/L和1.0 × 10-7~2.0 × 10-5 mol/L,检出限为1.0 ×10-9 mol/L(S/N=3). 将此电极用于模拟水样和超市购物小票样品中双酚A含量的测定,加标回收率分别为97%~110%和98%~104%.  相似文献   

11.
以壳聚糖、N-乙酰-L-半胱氨酸(NAC)为原料,以1-羟基苯并三唑(HOBt)和1-乙基-3-(3-二甲基胺丙基)碳化二亚胺盐酸盐(EDAC)为缩合剂,合成功能化壳聚糖衍生物巯基壳聚糖(CHS-NAC).用红外光谱(FTIR)、核磁共振(1H-NMR)及X射线衍射(XRD)对其结构进行表征,用Ellman’s试剂通过标准曲线法测得巯基含量.利用CHS-NAC的黏附性,通过层层吸附的方法将CHS-NAC、纳米金及细胞色素c分别修饰到玻碳电极(GC)上,通过扫描电子显微镜(SEM)对修饰电极表面的形貌进行了观察,采用循环伏安和电化学阻抗研究了不同修饰膜电极的电化学行为,及扫描速率对细胞色素c修饰电极的影响,并开展了对过氧化氢的电催化分析.实验结果表明,CHS-NAC能高效地将纳米金及细胞色素c固定在电极表面,并能有效发挥纳米金辅助转移电子及细胞色素c对过氧化氢催化的能力.  相似文献   

12.
Li Y  Zhou Y  Xian H  Wang L  Huo J 《Analytical sciences》2011,27(12):1223-1228
A promising electrochemical sensor was fabricated by the self-assembling of Pt nanoparticles (nano-Pts) on a chitosan (CS) modified glassy carbon electrode (GCE). A field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM) and electrochemical techniques were used for characterization of these composites. It has been found that nano-Pts are inserted into the CS layer uniformly, and have a larger surface area compared to the chitosan modified glassy carbon electrode. Electrocatalytic experiments for the oxidation of nitrite and the reduction of iodate have shown that nano-Pts/CS/GCE can decrease the over-potential and increase the faradic current, which can be used for the sensitive determination of nitrite and iodate. Moreover, the prepared modified electrode exhibits good reproducibility and stability, and it is possible that this novel electrochemical sensor can be applied in the sensing and/or biosensing field.  相似文献   

13.
In this study, 4‐thiophenol modified glassy carbon electrode was prepared by the reduction of 4‐diazothiophenol tetrafluoroborate salt. Silver nanoparticles were attached to the thiophenol modified surface to prepare a thiophenol‐silver nanoparticle composite film. 4‐Aminothiopenol molecules were deposited by self‐assembling technique to form multi‐layered nanofilms of TP/SNP/PhNH2 on glassy carbon substrate. These surfaces were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy, reflectance‐absorption infrared spectroscopy, and ellipsometry at each multilayer film growth process. Atomic force microscopic images of GC/TP/SNP/PhNH2 surfaces were also acquired. The characterization methods show that the amine group containing surface permits the subsequent modification by a variety of coupling reactions for the immobilization of more complex systems. An application of the electrode modification for the determination of uric acid with a significantly lower detection limit is described. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
张亚  邢艳  焦玉荣 《分析试验室》2021,40(3):270-274
将银纳米粒子(AgNPs)电沉积在碳纳米纤维(CNFs)修饰玻碳电极表面制备纳米银/碳纳米纤维修饰玻碳电极(AgNPs/CNFs/GCE).采用扫描电镜考察其表面形态,在K3[Fe(CN)6]-K4[Fe(CN)6]体系中用循环伏安法和电化学阻抗法研究AgNPs/CNFs/GCE的电化学行为.采用循环伏安法和方波伏安法...  相似文献   

15.
Journal of Solid State Electrochemistry - A novel electrochemical method for determination of losartan using a glassy carbon electrode modified with carbon black nanoparticles immobilized within a...  相似文献   

16.
以恒电位将金纳米粒子(AuNP)沉积于玻碳电极表面,在模板分子乙基溴硫磷存在下通过循环伏安法将L-半胱氨酸组装到金纳米粒子修饰的玻碳电极上,制备了可选择性识别乙基溴硫磷的L-Cys/ AuNP/ GCE印迹膜电极.结果表明,该电极具有良好的稳定性和重现性,对乙基溴硫磷的线性响应范围为2.5 ~17.5μmol/L,检出...  相似文献   

17.
A simple, sensitive and reliable electrochemical sensor has been developed based on CuO nanostructures modified glassy carbon electrode for simultaneous determination of hydroquinone (HQ) and ascorbic acid (AA). The CuO nano material was synthesized by aqueous chemical growth method using different sources of OH. The characterization of nano material was performed by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy and energy dispersive X‐ray spectroscopy. The glassy carbon electrode was modified by CuO nano material using drop cast method and studied by cyclic voltammetry. The CuO/GCE exhibited excellent electrocatalytic activity towards the oxidations of HQ and AA in borate buffer solution (pH 8.0) and the corresponding electrochemical signals have appeared as two well resolved oxidation peaks with significant peak potential differences of (0.21V vs. Ag/AgCl). Differential pulse voltammetry was used for simultaneous determination of HQ and AA using the CuO/GCE. At the optimum conditions, for simultaneous determination by synchronous change of the analyte concentrations, the linear response ranges were between 0.0003–0.355 mM for HQ and 0.0001–0.30 mM for AA respectively. Furthermore, CuO/GCE was successfully applied for the independent determination of AA in fruit juices as well as for the simultaneous determination of HQ and AA in cosmetic samples.  相似文献   

18.
Dimethylamine borane (DMAB) is a promising fuel alternative for fuel cell applications. In this work cyclic voltammetric behavior of DMAB was investigated on the polymerized aminophenol film decorated with Ag nanoparticles in alkaline media. The polymer film was formed on the glassy carbon electrode by electrochemical technique and then, the surface was modified with Ag nanoparticles. The surface of the modified electrode was identified by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy techniques. The developed electrode has displayed high electrocatalytic activity for DMAB oxidation in alkaline media depending on the supporting electrolyte concentration. Experimental parameters such as cycle number used in electropolymerization of p-aminophenol, deposition of Ag nanoparticles and supporting electrolyte were optimized.  相似文献   

19.
This paper describes the preparation of a new sensor based on Zn‐ferrite modified glassy carbon paste electrode and its electrochemical application for the determination of trace Cd(II) ions in waste waters using differential pulse anodic stripping voltammetry (DPASV). Different Zn/Ni ferrite nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and X‐ray powder diffraction (XRPD). The prepared ferrite nanoparticles were used for the preparation of Zn‐ferrite‐modified glassy carbon paste electrode (ZnMGCPE) for determination of Cd(II) at nanomolar levels in waste water at pH 5. The different parameters such as conditions of preparation, Zn2+/Ni2+/Fe2+ ratio and electrochemical parameters, percentage of modifier, accumulation time, pH and accumulation potential were investigated. Besides, interference measurements were also evaluated under optimized parameters. The best voltammetric response was observed for ZnFe2O4 modifier, when the percentage of modifier was 3 %, accumulation time 9 min, pH of supporting electrolyte 5 and accumulation potential ?1.05 V. Thus prepared electrode displays excellent response to Cd(II) with a detection limit of 0.38 ppb, and selective detection toward Cd(II) was achieved.  相似文献   

20.
A simple method for the determination of trace cadmium (Cd) (II), using a disposable 1-(2-pyridylazo)-2-naphthol [PAN]-Nafion®-coated glassy carbon electrode, has been developed. The modified electrode exhibited a significant improvement on both sensitivity and selectivity for Cd (II) determination, compared with a bare glassy carbon electrode (GCE), a PAN-coated GCE (PAN-GCE), and a Nafion®-coated GCE (Nafion® GCE). Differential pulse anodic stripping voltammetry (DPASV) was performed, in 0.05?M potassium hydrogen phthalate (KHP) buffer medium, after Cd (II) ion accumulation. The Cd(II) ion accumulated on the PAN-Nafion® surface of the glassy carbon working electrode through the formation of a chemical complex at an open circuit. The modified GCE with Cd (II) complex was then transferred to a 0.1?M KI solution and subjected to an electrochemical stripping procedure. Cyclic voltammetry (CV) was employed to confirm the successful stepwise assembly procedure for the modified electrode. The structure of PAN-Nafion® on the surface-modified electrode was characterised by scanning electron microscopy (SEM). System variables were optimised to yield the most suitable conditions, including the pH and concentration of the accumulation medium, deposition potential, deposition time, and amount of coated PAN-Nafion®. The quantitative analysis of contaminated cadmium in phosphate fertiliser samples was performed. The results obtained from the proposed method agree well with those obtained by inductively coupled plasma-optical emission spectrophotometry (ICP-OES).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号