首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The exact parametric representations of the traveling wave solutions for a nonlinear elastic rod equation are considered. By using the method of planar dynamical systems, in different parameter regions, the phase portraits of the corresponding traveling wave system are given. Exact explicit kink wave solutions, periodic wave solutions and some unbounded wave solutions are obtained.  相似文献   

2.
With the aid of computer symbolic computation system Maple, the generalized auxiliary equation method is first applied to two nonlinear evolution equations, namely, the nonlinear elastic rod equation and (2 + 1)‐dimensional Boiti‐Leon‐Pempinelli equation. As a results, some new types of exact traveling wave solutions are obtained which include bell and kink profile solitary wave solutions, and triangular periodic wave solutions and singular solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
利用有限变形理论的Lagrange描述,借助非保守系统的Hamilton型变分原理,导出了描述弹性杆中几何非线性波的波动方程.为了使非线性波动方程有稳定的行波解,计及了粘性效应引入的耗散和横向惯性效应导致的几何弥散.运用多重尺度法将非线性波动方程简化为KdV-Bergers方程,这个方程在相平面上对应着异宿鞍-焦轨道,其解为振荡孤波解.如果略去粘性效应或横向惯性,方程将分别退化为KdV方程或Bergers方程,由此得到孤波解或冲击波解,它们在相平面上对应着同宿轨道或异宿轨道.  相似文献   

4.
Interference attenuating waves traveling in a cylindrical elastic waveguide, placed in an elastic medium, are considered. The group velocity of these waves is intermediate between that of the P wave and that of the S wave; the phase velocity equals that of the P wave. The frequency of the waves is almost constant and is determined by the requirement of constructive interference. The dispersion and attenuation of these waves are described. Bibliography: 3 titles.  相似文献   

5.
We study bifurcations of periodic traveling waves in diatomic granular chains from the anti-continuum limit, when the mass ratio between the light and heavy beads is zero. We show that every limiting periodic wave is uniquely continued with respect to the mass ratio parameter, and the periodic waves with a wavelength larger than a certain critical value are spectrally stable. Numerical computations are developed to study how this solution family is continued to the limit of equal mass ratio between the beads, where periodic traveling waves of homogeneous granular chains exist.  相似文献   

6.
Propagation of small perturbations in a two-layer inviscid fluid rotating at a constant angular velocity is studied. It is assumed that the lower density fluid occupies the upper unbounded half-space, while the higher density fluid occupies the lower unbounded half-space. The source of excitation is a plane wave traveling along the interface of the fluids. An explicit analytical solution to the problem is constructed, and its existence and uniqueness are proved. The long-time wave pattern developing in the fluids is analyzed.  相似文献   

7.
General form nonlinear governing equations for the wave traveling in a nonlinear elastic structural element of large deflection are derived in the present research. An asymptotic solution of solitary wave in the elastic element is derived and investigated by means of a modified complete approximate method. Numerical computations for the solution are carried out. Characteristics of the solitary wave are investigated with various system parameters and initial conditions. Shapes and the propagation of the nonlinear elastic wave are also illustrated with figures. Based on the theoretical and numerical analyses of the research, quantitative conclusions are obtained for the wave motion of the elastic structural element.  相似文献   

8.
Matthias Graf 《PAMM》2017,17(1):679-680
Sliding friction between two bodies can generate elastic vibration. This study uses a finite-element model comprising an elastic body sliding against a flat rigid surface with constant coefficient of friction. For the elastic body a structured topography is taken into account. The model shows traveling surface waves, which depend on the asperities of the sliding surface. It can be shown that the surface structure and its inertia are the cause for elastic waves in the contact region. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In the recent biomechanical theory of cancer growth, solid tumors are considered as liquid-like materials comprising elastic components. In this fluid mechanical view, the expansion ability of a solid tumor into a host tissue is mainly driven by either the cell diffusion constant or the cell division rate, with the latter depending on the local cell density (contact inhibition) or/and on the mechanical stress in the tumor. For the two by two degenerate parabolic/elliptic reaction-diffusion system that results from this modeling, the authors prove that there are always traveling waves above a minimal speed, and analyse their shapes. They appear to be complex with composite shapes and discontinuities. Several small parameters allow for analytical solutions, and in particular, the incompressible cells limit is very singular and related to the Hele-Shaw equation. These singular traveling waves are recovered numerically.  相似文献   

10.
An extended auxiliary equation method for exact traveling wave solutions of constant coefficient nonlinear partial differential equations of evolution is proposed. This, together with a convenient characterization, affords new exact traveling wave solutions of some classes of nonlinear power law diffusion equations to be obtained.  相似文献   

11.
The local length-dependence of the natural frequencies and forms of plane transverse oscillations of a thin inhomogeneous rod in an elastic medium with a variable stiffness and arbitrary elastic-fastening boundary conditions is investigated. It is established that the presence of an external elastic medium, described by the Winkler model, can lead to an anomalous effect – an increase in the natural frequencies of lower oscillation modes as the length of the rod increases continuously. The extremely fine properties of this change as a function of the length, the mode number and the method of fastening are revealed. The oscillations in the case of standard methods of fastening are investigated separately. Simple examples, which illustrate the anomalous dependence of the natural oscillation frequencies of the rod in an extremely inhomogeneous elastic medium with different boundary conditions are calculated.  相似文献   

12.
We study traveling front solutions for a two-component system on a one-dimensional lattice. This system arises in the study of the competition between two species with diffusion (or migration), if we divide the habitat into discrete regions or niches. We consider the case when the nonlinear source terms are of Lotka–Volterra type and of monostable case. We first show that there is a positive constant (the minimal wave speed) such that a traveling front exists if and only if its speed is above this minimal wave speed. Then we show that any wave profile is strictly monotone. Moreover, under some conditions, we show that the wave profile is unique (up to translations) for a given wave speed. Finally, we characterize the minimal wave speed by the parameters in the system.  相似文献   

13.
In this study, the highly nonlinear waves in periodic dimer granular chains were investigated by the theory of dynamical system and the method of phase diagram analysis. The bifurcations of the different traveling waves in parameter space and those different traveling waves and its phase diagram were given. In addition, the existence of smooth and non‐smooth traveling wave solutions are shown and various sufficient conditions to guarantee the existence of the above solutions were listed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we study the traveling wave solutions of a delayed diffusive SIR epidemic model with nonlinear incidence rate and constant external supplies. We find that the existence of traveling wave solutions is determined by the basic reproduction number of the corresponding spatial‐homogenous delay differential system and the minimal wave speed. The existence is proved by applying Schauder's fixed point theorem and Lyapunov functional method. The non‐existence of traveling waves is obtained by two‐sided Laplace transform. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A comprehensive exact treatment of free surface flows governed by shallow water equations (in sigma variables) is given. Several new families of exact solutions of the governing PDEs are found and are shown to embed the well-known self-similar or traveling wave solutions which themselves are governed by reduced ODEs. The classes of solutions found here are explicit in contrast to those found earlier in an implicit form. The height of the free surface for each family of solutions is found explicitly. For the traveling or simple wave, the free surface is governed by a nonlinear wave equation, but is arbitrary otherwise. For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed; in another case, the free surface is a horizontal plane while the flow underneath is a sine wave. The existence of simple waves on shear flows is analytically proved. The interaction of large amplitude progressive waves with shear flow is also studied.  相似文献   

16.
In this paper we consider a dispersive–dissipative nonlinear equation which can be regarded as a dissipation perturbed modified KdV equation, governing the evolution of long waves in an elastic rod immersed inside a viscoelastic medium. Using geometric singular perturbation theory, a construction of traveling waves for the equation is shown. This also is illustrated by presenting some numerical calculations.  相似文献   

17.
Two exact solutions of the plane strain problem of the harmonic oscillations of a viscoelastic rod, the cross-section of which is a right triangle, are proposed. Either the normal displacement and the shear stress or the shear displacement and the normal stress of the side surface of the rod are given. Six dimensionless parameters which affect the dynamic deformation process are derived. Two parameters characterize the contribution of the viscous properties with respect to the elastic properties, two others define the logarithmic decrement of the longitudinal and shear harmonic waves, and two other parameters affect the wavelength of the corresponding wave and the velocity of motion of the wave front of these waves. The velocities of both types of waves and their wavelengths turn out to be greater than the velocities and wavelengths of the corresponding elastic waves. It is shown that, for certain values of the viscosity and the oscillation frequency, pseudo-resonance frequencies are possible which are higher than the resonance frequencies for an elastic medium.  相似文献   

18.
The motion of a naturally straight inextensible flexible elastic hanging rod is formulated and then linearized about the straight solution. To solve this equation by separation of variables, an eigenvalue problem is derived. When the stiffness of the rod is small, the eigenvalue equation is a singular perturbation problem. This paper is devoted to solving this eigenvalue problem by boundary layer analysis when the stiffness is suitably small, especially on the analytic approximate solutions of the first several eigenvalues and eigenfunctions. The first three eigenvalues are also compared with the numerical results computed by a finite difference method. The excellent agreement shows the efficiency of the boundary layer analysis.  相似文献   

19.
In this paper, the traveling wave problem for a two-species competition reaction–diffusion–chemotaxis Lotka–Volterra system is investigated. Upper and lower solutions method and fixed point theory are employed to show the existence of traveling wave solutions connecting the coexistence constant steady state with zero state for all large enough wave speed c, and conversely, when c is small, we prove there is no traveling wave solution.  相似文献   

20.
We study the boundary control by an elastic force at one end of an inhomogeneous rod that has two parts of different densities and elasticities and whose other end is free. The case in which the wave travels either of the homogeneous parts in the same time is considered. We present a closed-form analytical expression for the boundary control by an elastic force that brings the rod from the initial quiescent state to a given terminal state specified by given terminal displacement and terminal velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号