首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Russian Chemical Bulletin - The synthesis of heat-resistant thermoplastic polymers from the class of aromatic polyethers, namely, cardo poly(arylene ether ketones) (co-PAEK) and cardo poly(arylene...  相似文献   

2.
The influence of isomerism of difluorobenzophenone on the efficiency of polycondensation and the properties of homo- and copoly(arylene ether ketones) was studied. The latter were prepared by the reaction of 2,4"- and 4,4"-difluorobenzophenone with potassium diphenolates of bisphenol À and phenolphthalein in N,N-dimethylacetamide. A high content of an admixture of the 2,4"-isomer in 4,4"-difluorobenzophenone decreases the molecular weight of related poly(arylene ether ketones) and has no substantial effect on their glass transition temperature.  相似文献   

3.
Summary: Poly(arylene ether sulfone)s of high molecular weight and narrow molecular weight distribution were obtained by melt polycondensation of 4,4′-difluorodiphenyl- sulfone and trimethylsilylethers of 4,4′-dihydroxydiphenylsulfone and phenylhydroquinone using CsF as catalyst. Although a block-like structure of the polymers could be expected from the course of reaction, only a single Tg ranging from 190 °C to 230 °C could be detected by DSC and which depended on the copolymer composition. Contrary to the sulfonation of similar poly(ether ether ketone)s the poly(arylene ether sulfone)s here reported were sulfonated both in the side chain and the main chain. Nonetheless the sulfonated poly(arylene ether sulfone)s showed high hydrolytic stability in water at 130 °C.  相似文献   

4.
The concentration dependence of the equivalent conductivity has been measured for dilute DMAc solutions of K, Na, and Li salts of aromatic polymers with ionizable side groups [poly(diphenylenesulfophthalide) and poly(arylene ether ketone) with side COOH groups]. A correlation between the concentration dependences of the equivalent conductivity and reduced viscosity shows that the first parameter initially sharply decreases with an increase in concentration and then achieves a limiting value at a rather low concentration and that precisely in this concentration range the polyelectrolyte effect manifests itself in the concentration versus reduced viscosity curve. With an increasing amount of metal ions incorporated into the polymer, the equivalent conductivity grows. It was demonstrated that the type of counterion affects the reduced viscosity and equivalent conductivity of salt solutions. This effect depends on the structure of the polymer backbone: for poly(arylene ether ketone) salts, the reduced viscosity and the equivalent conductivity increase in the sequence Li → Na → K, while for poly(diphenylenesulfophthalide) salts, the reduced viscosity increases in the reverse order and the equivalent conductivity remains almost invariable. The limiting values of the equivalent conductivity and the degree of association of polyelectrolytes have been estimated in terms of the Arrhenius-Ostwald theory. It has been shown that, in the case of poly(diphenylenesulfophthalide) salts, the equivalent conductivity and the degree of association are higher than those for poly(arylene ether ketone) salts with side COOH groups. This finding is indicative of a stronger binding of counterions by poly(arylene ether ketone).  相似文献   

5.
A new trifluoromethyl-activated AB monomer has been successfully synthesized by Pd-initiated coupling of 4-bromo anisole with 4-fluoro-3-trifluoromethylphenylboronic acid followed by demethylation. The monomer leads to a semifluorinated poly(arylene ether) by nucleophilic displacement polymerization reaction. The AB monomer has been further copolymerized with a corresponding AB 2 monomer to form the corresponding semifluorinated hyperbranched (hb) poly(arylene ether). The resulting linear and hb poly(arylene ether)s exhibited weight average molecular weight of 75700 and 144100 g/mol, respectively. The hb copolymer exhibited better solubility in different organic solvents compared to the linear poly(arylene ether). The polymers showed excellent thermal stability up to 522°C at 10% wt loss in air and glass transition temperatures as high as 187°C. The mechanical properties of the linear poly(arylene ether) film 1a exhibited tensile strength at break of 89 MPa, elongation at break of up to 3% and a Young’s modulus value of 2.66 GPa. The films of the polymers were hydrophobic in nature and showed water contact angle as high as 93.6°.  相似文献   

6.
A series of poly(arylene ether)s were successfully prepared by aromatic, nucleophilic substitution reactions with various perfluoroalkyl‐activated bisfluoromonomers with 4,4′‐bishydroxybiphenyl and 4,4′‐bishydroxyterphenyl. 4,4′‐Bishydroxyterphenyl was synthesized through the Grignard coupling reaction of magnesium salt of 4‐bromoanisole with dibromobenzene followed by demethylation with pyridine–hydrochloride. The products obtained by the displacement of fluorine atoms exhibited good inherent viscosity, up to 0.77 dL/g, and number‐average molecular weights up to 69,300. These poly(arylene ether)s showed very good thermal stability, up to 548 °C for 5% weight loss according to thermogravimetric analysis under synthetic air, and high glass‐transition temperatures, up to 259 °C according to differential scanning calorimetry, depending on the exact repeat unit structure. These polymers were soluble in a wide range of organic solvents, such as N‐methylpyrrolidone, dimethylformamide, tetrahydrofuran, toluene, and CHCl3, and were insoluble in dimethyl sulfoxide and acetone. Thin films of these poly(arylene ether)s showed good transparency and exhibited tensile strengths up to 132 MPa, moduli up to 3.34 GPa, and elongations at break up to 84%, depending on their exact repeating unit structures. These values are comparable to those of high‐performance thermoplastic materials such as poly(ether ether ketone) (PEEK) and Ultem poly(ether imide) (PEI). These poly(arylene ether)s exhibited low dielectric constants. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 55–69, 2002  相似文献   

7.
New poly(arylene ethers) containing side sulfo groups have been synthesized through the copolycondensation of 3,5-dinitrodiphenyl sulfone 4′-sulfonic acid and 4,4′-dichlorodiphenyl sulfone with bicyclic aromatic bisphenols under the conditions of aromatic nucleophilic substitution. On the basis of the blends of these copolymers with sulfonated poly(arylene ester ether ketone), membranes with satisfactory mechanical characteristics and high proton conductivity have been prepared.  相似文献   

8.
Poly(arylene ether)s ( 3 ), ( 4 ) containing pendant benzoyl groups as precursors for novel polyxanthenes ( 7 ), ( 8 ) were prepared by nucleophilic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone ( 1 ) or 2,5-difluoro-4-(4-dodecylbenzoyl)-4′-dodecylbenzophenone ( 2 ) with hydroquinone derivatives in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.80 dL/g. The novel polyxanthenes were synthesized via the reduction of poly(arylene ether)s followed by the Friedel-Crafts cyclization of diol polymers. The structure of the polyxanthenes was characterized by 1H-NMR and IR spectroscopies. Polyxanthene 8 was quite soluble in chloroform and THF. The 10% weight loss temperature of polyxanthene 7 was 510°C in nitrogen and it was 90°C higher than the corresponding poly(arylene ether) 3 . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2267–2272, 1997  相似文献   

9.
Novel poly(arylene ether)s with a rigid and zigzag 4,4″-o-terphenyldiyl structure, introduced into the polymer backbone were synthesized by nucleophilic displacement reaction of 4,4″-dihydroxy-o-terphenyl with several activated aromatic dihalides in virtually quantitative yields. The poly(arylene ether)s having high molecular weight show both good solubility in common organic solvents and high thermal stability up to 545°C. They are amorphous with glass transition temperatures of 160–200°C.  相似文献   

10.
A new phosphorus containing trifluoromethyl-activated bisfluoro B2 monomer has been synthesized successfully by coupling reaction of 4-methoxyphenylphosphonic dichloride and the Grignard salt of 5-bromo-2-fluorobenzotrifluoride. This monomer was converted to linear poly(arylene ether phosphine oxide)s by nucleophilic displacement of the fluorine atom on the benzene ring with several diphenols. The B2 monomer was further demethylated to form an AB2 monomer which on self condensation yielded hyperbranched poly(arylene ether phosphine oxide) with identical phosphorous containing moiety. The products obtained exhibit weight-average molecular weights as high as 600,000 g mol−1 in SEC. These linear and hyperbranched poly(arylene ether phosphine oxide)s showed thermal stability as high as 516 °C for 10% weight loss in TGA in nitrogen and showed glass transition temperatures up to 253 °C in DSC. All the polymers were soluble in a wide range of organic solvents, e.g., CHCl3, THF, NMP and DMF, however, the hb sample showed a significant lower solution viscosity compared to linear samples of similar molar mass. Transparent thin films of linear poly(arylene ether phosphine oxide)s casted from dichloromethane exhibited tensile strengths up to 50 MPa, a modulus of elasticity up to 0.95 GPa and elongation at break up to 36% depending on their exact repeating unit structures. No free standing films could be prepared from the hb analogue due to the missing entanglements, but stable thin polymer films on silicon wafers with high hydrophobicity were formed which showed water contact angles as high as 91°.  相似文献   

11.
Properties of a poly(arylene ether ketone) with carboxyl side groups, copolymers containing units of this homopolymer, and their salts with different degrees of neutralization by alkali metals were studied by the methods of dynamic mechanical analysis, thermogravimetric analysis, and differential scanning calorimetry. By varying the nature of a metal atom and the degree of neutralization of carboxylic groups of a homopolymer and their content in copolymers, one may change the properties of polymers, including their ability to form ion pairs and, hence, their glass transition temperatures. For polymer salts at the 100% neutralization of carboxylic groups, the storage modulus and the glass transition temperature are shown to increase with decreasing the radius of the metal ion. The thermal stability of poly(arylene ether ketone) with carboxylic side groups and copolymers with different contents of such groups may be controlled by varying the nature and content of the introduced metal.  相似文献   

12.
A series of macrocyclic arylene ether ketone oligomers from 4,4′-difluorobenzophenone, 2,4′-difluorobenzophenone and 1,3-bis(4′-fluorobenzoyl)benzene were prepared via aromatic nucleophilic substitution according to the pseudo-high dilution principle. Small-size aromatic macrocycles were isolated by silica gel column chromatography with cyclohexane/ethyl acetate as eluent. The chemical structures of these small-size macrocycles were characterized by matrix-assisted laser desorption ionization–time-of-flight–mass spectrometry (MALDI–TOF–MS), IR, 19F-,1H-, and 13C-NMR, and GPC techniques. Molecular chain length and steric hindrance of monomers affected the product compositions. The NMR results show that there are different chemical shifts in the different ring-size macrocyclic poly arylene ether ketones in spite of having the same repeating unit. The crystallizability and thermal properties of small-size arylene ether ketone macrocycles were also investigated by DSC, WAXD, TGA, and the results suggest that the crystallization and thermal properties are related to their intrinsic chemical structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1957–1967, 1999  相似文献   

13.
Exchange reactions that may proceed in the course of polycondensation during formation of a polymer from 4,4′-difluorobenzophenone and 4,4′-(isopropylidene)diphenol have been studied. It has been shown that the molecular mass of the polymer decreases under the action of 4,4′-(isopropylidene)diphenol diphenolate. The nucleophilic substitution of the activated aryl halide in DMAA in the presence of potassium carbonate yields high-molecular-mass block copoly(arylene ether ketones) based on 4,4′-difluorobenzophenone and a number of bisphenols. It was demonstrated the synthetic procedure and the chemical structure of block copoly(arylene ether ketones) strongly affect the onset temperature of softening and the mechanical characteristics of the films based on these polymers.  相似文献   

14.
One of the integral parts of the fuel cell is the proton exchange membrane. Our research group has been engaged in the past few years in the synthesis of several sulfonated poly(arylene ether) random copolymers. The copolymers were varied in both the bisphenol structure as well as in the functional groups in the backbone such as sulfone and ketones. To compare the effect of sequence length, multiblock copolymers based on poly(arylene ether sulfone)s were synthesized. This paper aims to describe our investigation of the effect of chemical composition, morphology, and ion exchange capacity (IEC) on the transport properties of proton conducting membranes. The key properties examined were proton conductivity, methanol permeability, and water self diffusion coefficient in the membranes. It was observed that under fully hydrated conditions, proton conductivity for both random and block copolymers was a function of IEC and water uptake. However, under partially hydrated conditions, the block copolymers showed improved proton conductivity over the random copolymers. The proton conductivity for the block copolymer series was found to increase with increasing block lengths under partially hydrated conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2226–2239, 2006  相似文献   

15.
Hydrophobic‐hydrophilic sequence multiblock copolymers, based on alternating segments of phenoxide terminated fully disulfonated poly(arylene ether sulfone) (BPS100) and fluorine‐terminated poly(arylene ether sulfone) (6FBPS0) were synthesized and evaluated for application as proton exchange membranes. By utilizing mild reaction conditions the ether–ether interchange reactions were minimized, preventing the randomization of the multiblock copolymers. Tough, ductile, transparent membranes were solution cast from the block copolymers and were characterized with regard to intrinsic viscosity, morphology, water uptake, and proton conductivity. The conductivity values of the 6FBPS0‐BPSH100 membranes were compared to Nafion 212 and a partially fluorinated sulfonated poly(arylene ether sulfone) random copolymer (6F40BP60). The nanophase separated morphology was confirmed by transmission electron microscopy and small angle X‐ray scattering, and enhanced proton conductivity at reduced relative humidity was observed with longer block lengths. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
A series of new poly(arylene ether sulfone)s has been obtained by solution condensation polymerisation starting from 1,5- and 2,6-bis-(4-fluorosulfonyl)naphthalene with various aromatic dihydroxy compounds. The polymers, obtained in quantitative yields, possessed inherent viscosities in the range 0.28-0.68 dl g−1, had good thermal stability (10% weight loss temperatures were above 405 and 420 °C respectively in nitrogen and air) and high glass transition temperatures (in the range 217-258 °C). They have been characterised by elemental and infrared analyses, GPC and wide-angle X-ray diffraction. The properties of these poly(arylene ether sulfone)s have been compared with those of the corresponding poly(arylene ether ketone)s.  相似文献   

17.
以4,4'-二氟二苯砜,4,4'-联苯二酚及1,5-二氯蒽醌为原料,采用亲核缩聚方法将具有良好热稳定性的蒽醌生色团分子以共价键方式引入到聚芳醚砜体系中,制备出了蒽醌含量分别为10%、20%及30%的热分解温度在500℃以上的新型耐高温有机高分子染料.该系列聚合物具有较高的分子量和良好的溶解性.利用红外光谱(FTIR)、核磁共振(1H-NMR)等表征方法确定了聚合物的结构;利用紫外-可见光谱测试(UV-Vis)初步研究了聚合物的光谱学特性;利用差示扫描量热测试(DSC)和热失重分析测试(TGA)研究了聚合物的热性能.  相似文献   

18.
The adhesive strength at the bipolymer blend/fiber interface was determined by the pull-out method. Epoxy resin blends with heat-resistant linear thermoplastics, poly(arylene ether ketone)s of different molecular masses and chemical compositions, were used as adhesives, and a steel wire of 150 μm diameter was used as a substrate. It was found that the addition of 5–20 wt % poly(arylene ether ketone) to epoxy resin results in a 10–20% increase in the adhesive strength; a sharp gain in the adhesive strength (by 50–80%) is observed at a modifier content of 30%. The introduction of nanoparticles (Na+-montmorillonite) into the epoxy resin-poly(arylene ether ketone) blend increases the strength of adhesive bonding to steel wire. Possible reasons for the observed changes in the adhesive strength are discussed.  相似文献   

19.
Several series of poly(arylene ether)s with trifluoromethyl substituents were prepared and characterized. These materials are potential candidates for the use as low dielectric constant insulators (intermetal dielectrics, IMD, and interlayer dielectrics, ILD) on microchips. Thermal stability up to 450 °C and a dielectric constant below 3 preferably below 2.5) is required for this application. The thermal stability of the poly(arylene ether)s was increased from 320°C to more than 500 °C by optimization of the structure of the repeating unit. The dielectric constant of one of the most promising structures was determined to be 2.8. In addition, plasma polymerized thin films from hexafluorobenzene, tetrafluorobenzene, perfluorotoluene and perfluorodecaline were prepared and characterized with respect to solubility, dielectric constant, adhesion, and thermal stability.  相似文献   

20.
Novel ionomers based on polybenzimidazole block sulfonated poly(arylene ether sulfone) show excellent thermal properties. The ionic aggregation of sulfonic acid groups leads to well-developed phase separated morphology and thus high proton conductivity at wide humidity range, up to 65 mS cm(-1) at 90% relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号