首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The double-layer characteristics of liquid renewable Cd–Ga (0.3 at % Cd) and In–Ga (14.2 at % In) electrodes in the gamma-butyrolactone (GBL) solutions of various electrolytes are studied by measuring the differential capacitance and using the method of open-circuit jet electrode. For the (Cd–Ga)/GBL and (In–Ga)/GBL interfaces, the zero-charge potentials, which are not distorted by the specific adsorption of ions, and the chemisorption potential drops of solvent are determined. It is shown that, in spite of the fact that the work function decreases as we pass from (In–Ga) to (Cd–Ga), the chemisorption potential drops of solvent on both electrodes are close. This behavior is explained by a closer approach of GBL dipoles to the surface of (Cd-Ga) electrode providing more effective overlapping of donor–acceptor levels of metal and solvent. It is shown that, in GBL, the adsorption parameters of halide ions and their surface activity series depend on the metal nature. On the (Cd–Ga) and (In–Ga) electrodes, the reversed surface activity series of halide ions is observed: on the Hg electrode in various solvents, the surface activity increases in the series Cl < Br < I, whereas on the (Cd–Ga) and (In–Ga) electrodes in GBL, it varies in the reverse series I < Br < Cl.  相似文献   

2.
Abstract

Stationary phases which have great affinity for Na+ were synthesized by incorporating 12-crown-4 polymer on silica gel for liquid chromatography of alkali and alkaline-earth metal ions. The stationary phases interact with Na+ most strongly of all alkali metal ions as expected, and the retention times on liquid chromatography of alkali metal ions were in the sequence Li+ < Cs+ < Rb+ < K+ < Na+. On the stationary phase, a mixture of Li+, Na+, and K+ can be separated completely by the elution with water/methanol mixture. By the use of spherical type silica gel instead of irregular type one and by effective end-capping of the residual silanol groups, the peak symmetry was improved significantly.  相似文献   

3.
A new polystyrene based membrane electrode of methyl substituted 6,7:13,14-dibenzo-2,4,9,11-tetraphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,6,8,11,13-hexaene (I) with sodium tetraphenylborate (NaTPB) and dibutyl phthalate (DBP) as anion excluder and plasticizing agent was prepared and investigated as Hg (II)-selective electrode. The electrode exhibits a Nernstian response for Hg (II) ions over a wide concentration range of 1.0 × 10−1–8.9 × 10−6 M with a slope of 30 ± 1 mV per decade concentration. It has a response time of 10 s and can be used for at least 4 months without any divergence in potentials. The membrane works satisfactorily in a partially non-aqueous medium up to a maximum 30% (v/v) content of methanol and ethanol. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metal ions and could be used in a pH range of 2.5–5.0. Normal interferents like Ag+, Cd2+ and Pb2+ low interfere in the working of the electrode. The electrode was successfully used in the direct determination of Hg2+ in aqueous solution.  相似文献   

4.
The rate of the hexacyanoferrate redox system shows a first order dependence on the concentration of the cationic component of the supporting electrolyte. The catalytic influence of the alkali metal cations on the electrode process increases in the order Li+<Na+<K+~Cs+. The temperature dependence of the rate constant of the electrode process in KF and LiNO3 has been measured and the results show that the activated complex is formed by the collision or association of a cation of the supporting electrolyte with the reactant anion, which may already be paired with one cation. It is suggested that this mechanism may be applicable to other electrode reactions involving highly charged species.  相似文献   

5.
Here we reported that UV light irradiation can significantly enhance sensitivity of Ti/TiO2 electrode for determination of trace heavy metal ions (such as Cu2 +, Pb2 + and Cd2 +) owing to the photodeposition of metal ions on the surface of electrodes. The sensitivity of heavy metal ions can be selectively enhanced over the Ti/TiO2 electrode, which is attributed to matching between potential of heavy metal ions and the position of the conduction band of TiO2.  相似文献   

6.
A new inductively coupled plasma mass spectrometer with an enlarged sampling orifice (1.31-mm dia.) and an offset ion lens yields very low levels of many troublesome polyatomic ions such as ArO+, ArN+, Ar2 +, ClO+, and ArCl+. The signals from refractory metal oxide ions are ≈ 1% of the corresponding metal ion signals, which is typical of most ICP-MS devices. Grounding the first electrode of the ion lens greatly reduces the severity of matrix effects to <- 20% loss in signal for Co+, Y+, or Cs+ in the presence of 10 mM Sr, Tm, or Pb. This latter lens setting causes only a modest loss (30%) in sensitivity for analyte elements compared to the best sensitivity obtainable by biasing the first lens. Alternatively, matrix effects can also be mitigated by readjusting the voltage applied to the first lens with the matrix present.  相似文献   

7.
The process of electrochemical decomposition of the solid electrolyte RbCu4Cl3I2 at a vitreous carbon electrode has been investigated. The anodic decomposition of the electrolyte occurs in two steps. At first, the oxidizing electrode reaction of Cu+ ions to Cu2+ ions takes place at potentials higher than 0.57 V and a layer of decomposition products is formed on the electrode surface, including the divalent copper compound RbCuCl3. Then the oxidizing reaction of I ions occurs at potentials higher than approximately 0.67 V, with deposition of an iodine layer onto the electrode surface. The deposition rate of the layers of decomposition products is controlled by instantaneous nucleation and two-dimensional growth of the deposit. The total thickness of the passivating layer of decomposition products on the anode is equal to ca. 1 μm. Electronic Publication  相似文献   

8.
Liu X  Li W  Shen Q  Nie Z  Guo M  Han Y  Liu W  Yao S 《Talanta》2011,85(3):1603-1608
The heavy metal ions-nucleobases interaction is an important research topic in environmental and biochemical analysis. The presence of the silver ion (Ag+) may influence the formation of oxidation intermediate and the electrocatalytic oxidation activity of guanine (G), since Ag+ can interact with guanine at the binding sites which are involved in the electrocatalytic oxidation reaction of guanine. According to this principle, a new electrochemical sensor for indirectly detecting Ag+ based on the interaction of Ag+ with isolated guanine base using differential pulse voltammetry (DPV) was constructed. Among the heavy metal ions examined, only Ag+ showed the strongest inhibitory effect on the electrocatalytic oxidation of guanine at the multi-walled carbon nanotubes modified glassy carbon electrode (CNTs/GC). And the quantitative study of Ag+ based on Ag+-G sensing system gave a linear range from 100 nM to 2.5 μM with a detection limit of 30 nM. In addition, this modified electrode had very good reproducibility and stability. The developed electrochemical method is an ideal tool for Ag+ detection with some merits including remarkable simplicity, low-cost, and no requirement for probe preparation.  相似文献   

9.
The performance of calix[2]furano[2]pyrrole and related compounds used as neutral carriers for silver selective polymeric membrane electrode was investigated. The silver ion-selective electrode based on calix[2]furano[2]pyrroles gave a good Nernstian response of 57.1 mV per decade for silver ion in the activity range 1×10−6 to 1×10−2 M. The present silver ion-selective electrode displayed very good selectivity for Ag+ ion against alkali and alkaline earth metal ions, NH4+, and H+. In particular, the present Ag+-selective electrode exhibited very low responses towards Hg2+ and Pb2+ ions. The potentiometric selectivity coefficients of the silver ion-selective electrode exhibited a strong dependence on the solution pH. In particular, the response of the electrode to the Hg2+ activity was greatly diminished at pH 2.5 compared to that at pH 5.0. Overall, the performance of the present silver ion-selective electrode based on the ionophore, calix[2]furano[2]pyrrole, is very comparable to that of the electrode prepared with the commercially available neutral carrier in terms of slope, linear range, and detection limits.  相似文献   

10.
The relative metal ion (Ni+ and Co+) affinities of 14 alkanenitriles, alkenenitriles and benzonitrile were estimated using Cooks' kinetic method in a fast atom bombardment mass spectrometer. The results are compared with proton affinities, affinities for other metal ions, two-ligand dissociation enthalpies and the dipole moments of the nitriles. The RCN? Co+ bond is found to be close to the RCN? Ni+ bond but weaker than the RCN? Al+ bond. The effective temperature (T) of the metal-bound dimer ions falls in the range 298 K < T < 400 K.  相似文献   

11.
The process of formation of the electrode potential of EI-21 electron-ion exchanger, composed of ultrafine copper particles and KU-23 sulfocationite, was studied. The potentials of a EI-21 powdery electrode with a platinum lead in copper(II) sulfate solutions of various concentrations (0.005–1.0 M) were measured using currentless-mode potentiometry. The potential of this electrode first shifted by 0.02–0.15 V in the negative direction with respect to a compact copper electrode, after which the shift eventually decreased to ?0.010 ± 0.003 V. It was demonstrated that the time evolution of the potential is determined by the interplay of electron and ion exchange. When EI-21 is placed onto a platinum lead, the role of the potential-determining reaction passes from Cu2+ + e? ? Cu+ to Cu2+ + 2e? ? Cu. At the same time, H+-Cu2+ ion exchange gives rise to a change in the ratio of the concentration of copper(II) ions in the internal and external solutions. The Donnan potential, which arises at the boundary between the electron-ion exchanger and the external solution, maintains a high concentration of copper(II) ions in the internal solution, a factor that facilitates the recrystallization of the particle distributed over the bulk of the exchanger. The process of recrystallization slows down with time to such an extent that the electrode potential stops changing, remaining at a level close to the equilibrium potential of the Cu2+/Cu pair. It was concluded that the internal stability of the system makes the potential of the EI-21 electrode sensitive to the dispersity of the metal component and the concentration of potential-determining metal ions in the external solution.  相似文献   

12.
A new asymmetric capacitor concept is proposed providing high energy storage capacity for only one charging direction. Size‐selective microporous carbons (w<0.9 nm) with narrow pore size distribution are demonstrated to exclusively electrosorb small anions (BF4?) but size‐exclude larger cations (TBA+ or TPA+), while the counter electrode, an ordered mesoporous carbon (w>2 nm), gives access to both ions. This architecture exclusively charges in one direction with high rectification ratios (RR=12), representing a novel capacitive analogue of semiconductor‐based diodes (“CAPode”). By precise pore size control of microporous carbons (0.6 nm, 0.8 nm and 1.0 nm) combined with an ordered mesoporous counter electrode (CMK‐3, 4.8 nm) electrolyte cation sieving and unidirectional charging is demonstrated by analyzing the device charge‐discharge response and monitoring individual electrodes of the device via in situ NMR spectroscopy.  相似文献   

13.
The use of silver ion exchanged zeolites for the sampling and subsequent analysis of tributyl phosphate (TBP) by laser desorption-mass spectrometry is presented. This technique, which should be generally applicable to any organic molecule that undergoes facile reaction with metal cations, uses silver counter ions in the zeolites as chemical ionization reagent ions to form metal cationized pseudomolecular ions of the molecule sorbed by the zeolite. Resonant laser ablation was used to selectively generate Ag+ from the zeolite sample to reduce the number of unwanted ions injected into the ion trap, although conventional desorption ionization can be used to create metal cations. The experiment is simple to implement, and provides a strong ion signal for the Ag(TBP)+ adduct species. Mass spectrometry/mass spectrometry provides data necessary for compound identification. Adsorption of TBP based upon zeolite pore size was modeled for two zeolite structures and their ability to accept TBP into their pore volumes; these computational results are strongly supported by the experimental data presented here.  相似文献   

14.
A reactive electrode (reactrode) made of Prussian blue (PB), graphite and paraffin can be used for a selective determination of thallium ions down to a concentration of 2 · 10–8 mol 1–1. The working principle of the reactrode is that thallium ions can be pumped into Prussian blue during alternating oxidation-reduction cycles. After a preconcentration of thallium ions in PB, the voltammetric determination follows as usually in anodic stripping voltammetry, i.e. the thallium ions are reduced to thallium metal which is subsequently oxidized to give the anodic stripping signal. The peculiarity of the Prussian blue-thallium system is that the thallium ions are situated in the holes of the PB matrix. When reduced to metallic thallium, they are substituted by potassium ions. Cd2+, Fe3+, Zn2+, Cu2+ and Ni2+ do not interfere up to a hundredfold excess, NH4+ does not interfere up to a thousandfold – and Bi3+ up to tenfold excess. The interference by Pb2+ can be suppressed with EDTA.  相似文献   

15.
《Electroanalysis》2004,16(19):1622-1627
The pH‐dependence of the stationary open‐circuit potential Ei=0st of rhodium electrode with a surface layer of anodically formed insoluble compounds has been studied in sulfate and phosphate solutions by means of cyclic voltammetry and chronopotentiometry. The range of potentials of the investigations performed has been confined to the region of rhodium electrochemical oxidation/reduction, i.e., 0.2<E<1.2 V (RHE) in order to prevent any possible interference of other reactions such as H2 and O2 evolution. It has been shown that rhodium electrode with a layer of surface compounds formed anodically at E<<1.23 V (RHE) behaves like a reversible metal‐oxide electrode within the range of pH values from ca. 1.0 to ca. 8.0. It has been presumed that the stationary potential of such electrode is determined by the equilibrium of the following electrochemical reaction: Rh+3H2O??Rh(OH)3+3H++3e?. The pH‐dependence of the reversible potential of Eequation/tex2gif-inf-6.gif electrode has been found to be: Eequation/tex2gif-inf-8.gif=Ei=0st=0.69?0.059 pH, V. In acid solutions (pH<2.0) rhodium hydroxide dissolves into the electrolyte, therefore, to reach equilibrium, the solution must be saturated with Rh(OH)3. This has been achieved by adding Rh3+ ions in the form of Rh2(SO4)3. The solubility product of Rh(OH)3, estimated from the experimental Eequation/tex2gif-inf-16.gif?pH dependence obtained, is ca. 1.0×10?48, which is close to the value given in literature.  相似文献   

16.
The stability constants (Ks) of the complexes of alkali and alkaline earth metal ions with new type of the cryptands containing one or two thiourea moieties in one of the bridges were determined by means of pH-metric measurements in 95% aqueous methanol at 25 °C. Cryptands studied do not show any regular alteration of complexes stability depending on the mutual relation of cryptand cavity and cation sizes. In all cases, they form the most stable complexes with K+ along the series of alkali metal ions and with cations of Ba2+ or Sr2+ in the series of alkaline earth ions independently of variations of their structure. The log Ks values for K+, Sr2+ and Ba2+ vary in limits 3.51-5.90, 2.29-7.05 and 2.35-7.51, respectively, depending on the cryptands structure. The complexes stability of the studied cryptands increases in the order Li+ < Na+ (Cs+) < Cs+ (Na+) < Rb+ < K+ and Mg2+ < Ca2+ < Sr2+ (Ba2+) < Ba2+ (Sr2+). However, cryptands containing at least one oxygen atom between the nitrogen bridgehead and group of thiourea form considerably more stable complexes with respect to cryptands in which thiourea group connected with nitrogen bridgeheads via ethylenic chain. The origins of the cryptands complexation behavior are discussed in terms of ligands and complexes structural features.  相似文献   

17.
The results of electrochemical studies on the reaction of tetrabutyl- and tetramethylammonium (TBA+ and TMA+) ion transfer from water to 1,2-dichloroethane are presented in this paper and are compared with se of the water—nitrobenzene interface. The TMA+ ion transfer has been studied by the chronopotentiometric cyclic voltammetry methods and that of the TBA+ ion by the chronopotentiometric method only.It has been found that the reactions are diffusion controlled over the current density range up to about 1O μA cm?2 and at polarization rates up to 0.15V s?1. Diffusion coefficients of the studied ions have been detemined, as well as their formal potentials with respect to an ion-selective tetrabutylammonium electrode to a partition electrode containing tetraethylammonium picrate whose potential is close to zero. In additon, kinetic parameters of the transfer reaction have been determined for the tetrabutylammonium ion from data obtained at current densities over 10 μA cm?2 (irreversible range).  相似文献   

18.
《Electroanalysis》2006,18(22):2168-2173
A new compact holder for either 5‐ or 10‐MHz AT‐cut quartz crystal resonator of an electrochemical quartz crystal microbalance was designed, fabricated and characterized. The holder is a hydrodynamically controlled thin‐layer radial‐flow microelectrochemical cell. Its unique feature consists of (i) a micrometer‐screw adjustable distance between the movable coaxial assembly of the Ag/Ag+ pseudoreference electrode and the inlet capillary nozzle with respect to the metal‐film working electrode of the quartz crystal resonator, and (ii) a U‐clamp mountable resonator, easily accessible for change without using any tools. The inlet solution stream is centered axially against the working electrode. The holder performance was tested under different flow conditions. These include hydrodynamic voltammetry measurements on the Fe(CN) /Fe(CN) couple, i.e., a redox system with no mass transfer across the solution–electrode interface, as well as simultaneous chronoamperometry and chronoelectrogravimetry measurements under flow injection analysis (FIA) conditions on the Ag/Ag+ couple, i.e., a system with electrodeposition of a rigid metallic film. Moreover, simultaneous changes of resonant frequency and dynamic resistance were measured under FIA conditions for a glycerol solution, i.e., an electroinactive viscous medium. For the 30<Fm<180 μL min?1 volume flow rate of solution and 50<d<250 μm nozzle‐to‐resonator distance, the holder operates in a thin‐layer radial‐flow regime at a fully developed laminar flow. For Fm=30 μL min?1 and d=100 μm, both mass and charge conversion accompanying silver electrodeposition is appreciably high and close to 35%. Simultaneous measurements of the resonant frequency change and current‐potential or current‐time transients allowed investigations of electrochemical processes involving mass changes of rigid deposits while those of the frequency change and dynamic resistance change involve changes of viscoelastic properties of medium.  相似文献   

19.
The complexation reaction of phenylaza-15-crwon-5, 4- nitrobenzo- 15-crown-5, and benzo-15-crown-5 with Ag+, Tl+ and Pb2+ ions in methanol solution have been studied by a competitive potentiometric method. The Ag+/Ag electrode used both as an indicator and reference electrode in a concentration cell. The emf of cell monitored as the crown ethers concentration varies through the titration. The stoichiometry and stability constants of resulting complexes have been evaluated by MINIQUAD. The stoichiometry for all resulting complexes was 1:1. The stability of these metal ions with derivatives of 15-crown-5 are in order phenylaza-15-crown-5 > Benzo-15-crown-5 > 4-nitrobenzo-15-crown-5, and for the each used crown ethers are as Pb2+ > Ag+ > Tl+. The effect of the substituted group on the stability of resulting complexes was considered. The obtained results are novel and interesting.  相似文献   

20.
The mechanism of alkaline earth metal tungstate formation during soft solution processing was studied by cyclic voltammetry, electrochemical impedance spectroscopy and by direct in situ observation of the surface changes using atomic force microscopy. The electrochemical oxidation of W to WO3 was followed by dissolution of WO3 and, with some delay, by precipitation of tungstates at the metal surface. The same Tafel slopes observed in Li+, Ba2+, Sr2+ and Ca2+ containing solutions indicate that the course of the oxidation process is independent of the cation present in solution. The observed differences in the current-voltage curves outside the Tafel region are accounted for by the different film-forming tendencies of the various alkaline earth metal cations. The growth of tungstate layers at the W substrate decreases the electrochemically active area and limits the production of WO4 2– at later stages of deposition. At low potentials (E<0.2 V) the oxidation of W is the rate-controlling step. At higher potentials, however, the dissolution process slows down due to a relative decrease of the pH in the electrode vicinity and dissolution becomes the rate-limiting step. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号