首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A series of four different dilithium salts of structure F3CSO2N(Li)SO2-(CF2)x-SO2N(Li)SO2CF3, with x = 2, 4, 6, 8 were synthesized and characterized in polyethylene-oxide-based solid polymer electrolytes. Each salt may be thought of as two bis[(perfluoroalkyl)sulfonyl]imide anions linked together by a perfluoroalkyl chain of a particular length. Taken together, this homologous series provides an opportunity to study the effects of linker chain length and degree of fluorination in dianionic (and ultimately polyanionic) salts on the properties, particularly the conductivity, of the salts in various solvating media. SPEs in polyethylene oxide were characterized using scanning calorimetry, X-ray diffraction, 1H and 19F NMR, and electrochemical impedance spectroscopy for SPEs prepared using ethylene-oxide-oxygen-to-lithium (EO:Li) ratios of 10:1 and 30:1. Trends in SPE ionic conductivity with anion structure revealed an unexpected trend whereby ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions. This trend could be the result of a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing anion fluorine content, thereby increasing ionic conductivity.  相似文献   

2.
The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF‐TrFE) has been investigated. 1‐ethyl‐3‐methylimidazolium acetate, [C2mim][OAc], 1‐ethyl‐3‐methylimidazolium triflate, [C2mim][(CF3SO3)], 1‐ethyl‐3‐methylimidazolium lactate, [C2mim][Lactate], 1‐ethyl‐3‐methylimidazolium thiocyanate, [C2mim][SNC] and 1‐ethyl‐3‐methylimidazolium hydrogen sulfate [C2mim][HSO4] have been used in SPE prepared by solvent casting. The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC]>[CF3SO3)]>[HSO4]>[Lactate]>[OAc], which is mainly dependent on the viscosity of the ionic liquid.  相似文献   

3.
The cross-linked composite solid polymer electrolytes composed of poly(ethylene oxide), lithium salt (LiN(SO2CF3)2), and a hyperbranched polymer whose repeating units were connected by ether-linkage (hyperbranched polymer (HBP)-2) were prepared, and their ionic conductivity, thermal properties, electrochemical stability, mechanical property, and chemical stability were investigated in comparison with the non-cross-linked or cross-linked composite solid polymer electrolytes using hyperbranched polymers whose repeating units were connected by ester-linkage (HBP-1a, 1b). The cross-linked composite solid polymer electrolyte using HBP-2 exhibited higher ionic conductivity than the non-cross-linked and cross-linked composite solid polymer electrolytes using HBP-1a and HBP-1b, respectively. The structure of the hyperbranched polymer did not have a significant effect on the thermal properties and electrochemical stability of the composite solid polymer electrolytes. The tensile strength of the cross-linked composite solid polymer electrolyte using HBP-2 was lower than that of the cross-linked composite solid polymer electrolyte using HBP-1b, but higher than that of the non-cross-linked composite solid polymer electrolyte using HBP-1a. The HBP-2 with ether-linkage showed higher chemical stability against alkaline hydrolysis compared with HBP-1a with ester-linkage.  相似文献   

4.
交联PEO嵌段共聚物固体电解质的制备及导电性研究   总被引:3,自引:0,他引:3  
利用低分子聚乙二醇 (PEG ,Mn=6 0 0 )与CH2 Cl2 在碱性条件下通过Williamson反应生成氧亚甲基连接的聚氧化乙烯嵌段聚合物 .1 H NMR表明 ,其分子平均组成以 [CH2 O(CH2 CH2 O) 1 3]为重复单元结构 .适量的2 ,4 二异氰酸甲苯酯 (TDI)与聚合物 锂盐电解质形成交联网络结构 ,具有较好的成膜性能、力学性能与热稳定性能 .在测试温度范围内 ,电导率与温度的关系很好的符合Arrhenius关系式 (σ =Ae-Ea RT) .锂盐浓度不同 ,Arrhenius曲线有一个或两个活化能 (Ea)值出现 .该聚合物掺混LiN(CF3SO2 ) 2 形成的固体电解质具有良好的导电性 ,在EO Li =2 5∶1(摩尔比 )时 ,室温下σ =1 12× 10 - 5S cm ,分解电压可达 5 0V .  相似文献   

5.
Transport properties such as ionic conductivity, lithium transference number, and apparent salt diffusion coefficient are reported for solid polymer electrolytes (SPEs) prepared using several oligomeric bis[(perfluoroalkyl)sulfonyl]imide (fluorosulfonimide) lithium salts dissolved in high molecular weight poly(ethylene oxide) (PEO). The salt series consists of polyanions in which two discrete fluorosulfonimide anions are linked together by [(perfluorobutylene)disulfonyl]imide linker chains. The restricted diffusion technique was used to measure the apparent salt diffusion coefficients in SPEs, and cationic transference numbers were determined using both potentiostatic polarization and electrochemical impedance spectroscopy methods. A general trend of diminished salt diffusion coefficient with increasing anion size was observed and is opposite to the trend observed in ionic conductivity. This unexpected finding is rationalized in terms of the cumulative effects of charge carrier concentration, anion mobility, ion pairing, host plasticization by the anions, and salt phase segregation on the conductivity.  相似文献   

6.
Solid polymer electrolytes (SPEs) are compounds of great interest as safe and flexible alternative ionics materials, particularly suitable for energy storage devices. We study an unusual dependence on the salt concentration of the ionic conductivity in an SPE system based on poly(ethylene carbonate) (PEC). Dielectric relaxation spectroscopy reveals that the ionic conductivity of PEC/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte continues to increase with increasing salt concentration because the segmental motion of the polymer chains is enhanced by the plasticizing effect of the imide anion. Fourier transfer‐infrared (FTIR) spectroscopy suggests that this unusual phenomenon arises because of a relatively loose coordination structure having moderately aggregated ions, in contrast to polyether‐based systems. Comparative FTIR study against PEC/lithium perchlorate (LiClO4) electrolytes suggests that weak ionic interaction between Li and TFSI ions is also important. Highly concentrated electrolytes with both reasonable conductivity and high lithium transference number (t+) can be obtained in the PEC/LiTFSI system as a result of the unusual salt concentration dependence of the conductivity and the ionic solvation structure. The resulting concentrated PEC/LiTFSI electrolytes have extraordinary oxidation stability and prevent any Al corrosion reaction in a cyclic voltammetry. These are inherent effects of the highly concentrated salt. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2442–2447  相似文献   

7.
The molecular crystals [Li{N(SO2CF3)2}{C6H4(OCH3)2}2] and [Li{N(SO2CF3)2}{C6F2H2(OCH3)2}2] with solid‐state lithium ion conductivity have been synthesized by the addition of two equivalents of 1,2‐dimethoxybenzene or 1,2‐difluoro‐4,5‐dimethoxybenzene to Li{N(SO2CF3)2}, respectively. Single‐crystal X‐ray diffraction analysis revealed the formation of ionic conduction paths with an ordered arrangement of lithium ions in these crystal structures, afforded by the self‐ assembled stacking of molecular‐based channels consisting of N(SO2CF3)2 anion and 1,2‐dimethoxybenzene frameworks as a result of intermolecular aromatic and hydrogen interactions. These compounds show selective lithium ion conductivity as the anions behave as a component unit of the conduction paths. The relationship between the crystal structure and ionic conductivity of the molecular crystals provides a clue to the development of novel solid electrolytes based on molecular crystals showing fast and selective lithium ion conduction.  相似文献   

8.
Polymer electrolytes based on poly(ethylene oxide) and lithium salts have been widely studied in recent years. In order to enhance the room temperature ionic conductivity of PEO-LiX complexes, various techniques, such as addition of plasticizers and crown ether, and also irradiation by γ and electron beams have been investigated. The enhancement of the conductivity by irradiation has been accounted for the decreasing of the crystallinity of PEO-LiX. We reviewed these results and have investigated the degradation processes of PEO using Tb3+ fluorescence probes. We have also studied on the effects of irradiation of polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA) and PEO using Tb+3 fluorescence probe. Various monomers containing SO3H and COOH have been grafted on poly(ethylene oxide) using irradiation technique. The structures and ionic conductivities of Li and Na salts of irradiated products were investigated in detail.  相似文献   

9.
Lithium electrode passivation is studied in different organic electrolytes, namely, 1 M LiClO4 in 1,3-dioxolane, 1 M LiN(CF3SO2)2 in 1,3-dioxolane, 1 M LiPF6 in an ethylene carbonate-diethyl carbonate mixture, 1 M LiPF6 in an ethylene carbonate-dimethyl carbonate mixture, using the electrochemical noise method. The dynamics of passive film formation on the lithium surface in the mentioned electrolytes that differ in their corrosivity towards lithium is followed.  相似文献   

10.
The anion chemistry of lithium salts plays a pivotal role in dictating the physicochemical and electrochemical performance of solid polymer electrolytes (SPEs), thus affecting the cyclability of all‐solid‐state lithium metal batteries (ASSLMBs). The bis(trifluoromethanesulfonyl)imide anion (TFSI?) has long been studied as the most promising candidate for SPEs; however, the Li‐ion conductivities of the TFSI‐based SPEs still remain low (Li‐ion transference number: ca. 0.2). In this work, we report new hydrogen‐containing anions, conceived based on theoretical considerations, as an electrolyte salt for SPEs. SPEs comprising hydrogen‐containing anions achieve higher Li‐ion conductivities than TFSI‐based ones, and those anions are electrochemically stable for various kinds of ASSLMBs (Li–LiFePO4, Li–S, and Li–O2 batteries). This opens up a new avenue for designing safe and high‐performance ASSLMBs in the future.  相似文献   

11.
The results of the electrochemical study of the Li–Sn system in the electrolytes consisted of LiN(CF3SO2)2 and tetraethylene glycol dimethyl ether in relation to the LiN(CF3SO2)2 concentration, temperature, and storage conditions are presented. The optimal concentrations of the salt component in salt-solvates were determined. These concentrations make it possible to obtain high stable values of the specific capacity in cycling and charge storage at room and elevated temperatures. It was shown that the operation stability of the electrochemical system Li–Sn–LiN(CF3SO2)2 in salt-solvate solutions depends on solubility of the formed lithium disulfide, ratio composition of electrolyte and temperature.  相似文献   

12.
A series of copolymers of predominantly poly(ethylene oxide) (PEO) with biphenyl (BP) units in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from these copolymers (BP-PEG) employing lithium perchlolate (LiClO4) as a lithium salt and their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of chain length ratio between the flexible PEO chains and rigid BP units. The ionic conductivity increases with increasing PEO length in BP-PEG. The salt concentrations in BP-PEG/LiClO4 complexes were also changed and the results show that maximum conductivity is obtained at [EO]/[Li+]≈8. The reasons for these findings are discussed in terms of the number of charge carriers and the mobility of the polymer chain.  相似文献   

13.
Ion transport in polymeric electrolytes (PEs) has been studied for approximately a half century, yet the ion conduction mechanism in the PEs is not fully understood. Herein, we report a new approach to understand the ion migration process in poly (ethylene oxide)/Lithium bis(trifluoromethane sulphonyl) imide (PEO/LiTFSI) and poly (ethylene oxide)/Lithium bis(oxalate) borate (PEO/LiBOB) electrolytes based on quantum mechanics. The results show that the coefficient of determination (R2) obtained from the new model exceeds 0.99 for all the PEs, which is far higher than these obtained from the well-known Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The wavelength (λLi+) of Li-ion migrations or the distance between the occupied site and the neighboring partially-occupied site is the most crucial factor to affect the ionic conductivity of PEs. The higher the λLi+, the better the ionic conductivity. The maximum λLi+ value of the PEs approximates angstrom order of magnitude. The developed ion conduction model opens an avenue to design PEs with a higher ionic conductivity.  相似文献   

14.
Activated carbon fibers (ACFs) with high surface area and highly mesoporous structure for electrochemical double layer capacitors (EDLCs) have been prepared from polyacrylonitrile fibers by NaOH activation. Their unique microstructural features enable the ACFs to present outstanding high specific capacitance in aqueous, non-aqueous and novel ionic liquid electrolytes, i.e. 371 F g−1 in 6 mol L−1 KOH, 213 F g−1 in 1 mol L−1 LiClO4/PC and 188 F g−1 in ionic liquid composed of lithium bis(trifluoromethane sulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and 2-oxazolidinone (C3H5NO2, OZO), suggesting that the ACF is a promising electrode material for high performance EDLCs.  相似文献   

15.
UV spectroscopy and cyclic voltammetry were used to examine the thermochemical and electrochemical stabilities of liquid sulfolane-based electrolyte systems for lithium and lithium-ion batteries. It was found that solutions of lithium salts in sulfolane are stable in prolonged keeping at 100°C. The thermochemical stability of lithium salt solutions in sulfolane changes in the order LiBF4 > LiClO4 ≈ LiN(CF3SO2)2 > LiCF3SO3. It was shown that the electrochemical stability of lithium salt solutions in sulfolane is in the range from 5.5 to 5.9 V (relative to Li/Li+) and prolonged action of high temperatures (100°C) does not yield electrochemically active thermal destruction products.  相似文献   

16.
The phase diagrams, isotherms of the electrical conductivity, Raman spectra, and time correlation functions of vibrational dephasing are studied for the LiN(CF3SO2)2-(CH3)2SO2 system, which is promising for use as an electrolyte in medium-temperature lithium-ion batteries. The phase diagram of this system contains a broad supercooled region. It is shown that the concentration dependences of the electrical conductivity are typical for solutions of strong electrolytes. The Raman spectra and the time correlation functions of vibrational dephasing for the anion and the solvent indicate that in the supercooling range, cations are weakly solvated by solvent molecules and form ion pairs.  相似文献   

17.
Silver polymer electrolytes were prepared by blending silver salt with poly(oxyethylene)9 methacrylate)‐graft‐poly(dimethyl siloxane), POEM‐g‐PDMS, confining silver salts within the continuous ion‐conducting POEM domains of microphase‐separated graft copolymer. AgClO4 polymer electrolytes exhibited their maximum conductivity at high silver concentrations as well as higher ionic conductivities than AgCF3SO3 electrolytes. The difference in conductivities of the two electrolytes was investigated in terms of the differences in the interactions of silver ions with ether oxygen of POEM and, hence, with the anions of salts. Upon the addition of salt in graft copolymer, the increase of Tg in AgClO4 was higher than that in AgCF3SO3 electrolytes. Analysis of an extended configuration entropy model revealed that the interaction of ether oxygen/AgClO4 was stronger than that of ether oxygen/AgCF3SO3 whereas the interaction of Ag+/ClO4? was weaker than that of Ag+/CF3SO3?. These interactions are supported by the anion vibration mode of FT‐Raman spectroscopy. It is thus concluded that the higher ionic conductivity of AgClO4 electrolytes was mostly because of higher concentrations of free ions, resulting from their strong ether oxygen/silver ion and weak silver ion/anion interactions. A small angle X‐ray scattering study also showed that the connectivity of the POEM phase was well developed to form nanophase morphology and the domain periodicities of graft copolymer electrolytes monotonically increased with the increase of silver concentration up to critical concentrations, after which the connectivity was less developed and the domain spacings remained invariant. This is attributed to the fact that silver salts are spatially and selectively incorporated in conducting POEM domains as free ions up to critical concentrations, after which they are distributed in both domains as ion pairs without selectivity. The increase of domain d‐spacing in AgClO4 electrolytes was larger than that in AgCF3SO3, which again results from high concentrations of free ions in the former. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1018–1025, 2007  相似文献   

18.
The composite polymer electrolyte (CPE) membranes, comprising of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), aluminum oxyhydroxide, (AlO[OH]n) of two different particle sizes 7 μm/14 nm and LiN(CF3SO2)2 as lithium salt were prepared using solution casting technique. The prepared membranes were subjected to XRD, impedance spectroscopy, compatibility and transport number studies. The incorporation of nanofiller greatly enhanced the ionic conductivity and the compatibility of the composite polymer electrolyte. Also LiCr0.01Mn1.99O4/CPE/Li cells were assembled and their charge-discharge profiles have been made at 70 °C. The film which possesses nanosized filler offered better electrochemical properties than those with micron sized filler. The results are discussed based on Lewis acid-base theory.  相似文献   

19.
Single salt polymer electrolytes based on hexanoyl chitosan‐ENR25 were prepared by employing LiN (CF3SO2)2 or LiCF3SO3 as the doping salt. Elastic property of hexanoyl chitosan was enhanced with the incorporation of ENR25. DSC studies revealed immiscibility of hexanoyl chitosan and ENR25, and dissolution of salt was favored in ENR25 phase. Conductivity enhancement was observed in the blends as compared with the neat hexanoyl chitosan. The maximum conductivities achieved for LiCF3SO3‐ and LiN (CF3SO2)2‐comprising electrolyte systems were 1.6 × 10?8 and 5.0 × 10?7 S cm?1, respectively. Deconvolution of spectra bands in the vas (SO2?) mode of LiN (CF3SO2)2 and vs (SO3?) mode of LiCF3SO3 has been carried out to estimate the relative percentage of free ions and associated ions. The findings were in good agreement with conductivity results. Electrical double layer capacitor (EDLC) was fabricated with hexanoyl chitosan/ENR25 (90:10)‐LiN (CF3SO2)2‐EmImTFSI electrolyte and activated carbon‐based electrodes. The conductivity and electrochemical stability window of hexanoyl chitosan/ENR25‐LiN (CF3SO2)2‐EmImTFSI were ~10?6 S cm?1 and 2.7 V, respectively. The performance of the EDLC was analyzed by cyclic voltammetry (CV) and galvanostatic charge‐discharge (GCD). From GCD, the specific capacitance of EDLC was 58.0 F g?1 at 0.6 mA cm?2. The specific capacitance was found to decrease with increasing current density.  相似文献   

20.
Conductance data for lithium bis(trifluoromethanesulfone)imide, LiN(CF 3 SO 2 ) 2 , are reported for the solvents water, propylene carbonate, acetonitrile and methyl formate at 25°C. Limiting molar conductivitiesA 0, association constants K A , and triple ion formation constants K t are reported where applicable. These data are compared with literature data for the commonly studied lithium salts LiClO 4 and LiAsF 6 . Non-coulombic energy contributions to ion pair formation are evaluated and discussed in terms of ion-ion and ion-solvent interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号