首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Fibrous poly(L-lactide) (PLLA) and bicomponent PLLA/poly(ethylene glycol) mats were prepared by electrospinning and then were coated with chitosan. The presence of chitosan coating was proved by scanning electron microscopy and by fluorescence microscopy. On contact with blood, the chitosan coating led to changes in erythrocyte shape and in their aggregation. The haemostatic activity of the mats increased with increasing chitosan content. Microbiological studies against Staphylococcus aureus revealed that the chitosan coating imparts antibacterial activity to the hybrid mats. The combined haemostatic and antibacterial activities render these novel materials suitable for wound-healing applications.  相似文献   

2.
The preparation of continuous defect-free fibers from quaternized chitosan derivative (QCh) has been achieved by electrospinning of mixed aqueous solutions of QCh with poly(vinyl pyrrolidone) (PVP). The average fiber diameter significantly decreases from 2800 to 1500 nm on increasing the polyelectrolyte content. In order to impart to QCh/PVP electrospun fibers stability to water and water vapor, the fibers have been crosslinked by incorporation of photo-crosslinking additives into QCh/PVP spinning solutions and subsequent UV irradiation of the electrospun fibers. Photo-crosslinked QCh-containing electrospun mats show high antibacterial activity against the Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.  相似文献   

3.
The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both gram negative bacteria, Escherichia coli, and gram positive bacteria, Bacillus anthracis and Staphylococcus aureus.  相似文献   

4.
In order to impart antibacterial properties to microfibrous electrospun materials from styrene/maleic anhydride copolymers, quaternized chitosan derivatives (QCh) containing alkyl substituents of different chain lengths are covalently attached to the mats. A complete inhibition of the growth of bacteria, S. aureus (Gram‐positive) and E. coli (Gram‐negative), for a contact time of 30–120 min or a decrease of the bacterial titer by 2–3 log units is observed depending on the quaternization degree, the chain length of the alkyl substituent, and the molar mass of QCh. The modified mats are also effective in suppressing the adhesion of pathogenic S. aureus bacteria.

  相似文献   


5.
In this work, electrically conductive polyaniline (PAni) doped with camphorsulfonic acid (CPSA) is blended with poly(L-lactide-co-epsilon-caprolactone) (PLCL), and then electrospun to prepare uniform nanofibers. The CPSA-PAni/PLCL nanofibers show a smooth fiber structure without coarse lumps or beads and consistent fiber diameters (which range from 100 to 700 nm) even with an increase in the amount of CPSA-PAni (from 0 to 30 wt.-%). However, the elongation at break decreases from 391.54 +/- 9.20% to 207.85 +/- 6.74% when 30% of CPSA-PAni is incorporated. Analysis of the surface of the nanofibers demonstrates the presence of homogeneously blended CPSA-PAni. Most importantly, a four-point probe analysis reveals that electrical properties are maintained in the nanofibers where the conductivity is significantly increased from 0.0015 to 0.0138 S x cm(-1) when the nanofibers are prepared with 30% CPSA-PAni. The cell adhesion tests using human dermal fibroblasts, NIH-3T3 fibroblasts, and C2C12 myoblasts demonstrate significantly higher adhesion on the CPSA-PAni/PLCL nanofibers than pure PLCL nanofibers. In addition, the growth of NIH-3T3 fibroblasts is enhanced under the stimulation of various direct current flows. The CPSA-PAni/PLCL nanofibers with electrically conductive properties may potentially be used as a platform substrate to study the effect of electrical signals on cell activities and to direct desirable cell function for tissue engineering applications.  相似文献   

6.
Nanofibers based on natural polymers have recently been attracting research interest as promising materials for use as skin substitutes. Here, we prepared photocrosslinked nanofibrous scaffolds based on methacrylated chitosan (MACS) by photocrosslinking electrospun methacrylated chitosan/poly (vinyl alcohol) (PVA) mats and subsequently removing PVA from the nanofibers. We comprehensively investigated the solution properties of MACS/PVA precursors, the intermolecular action between MACS and PVA components, and the morphology of MACS/PVA nanofibers. Results indicated that the fiber diameter and morphology of the photocrosslinked methacrylated chitosan-based nanofibrous scaffolds were controlled by the MACS/PVA mass ratio and showed highly micro-porous structures with many fibrils. In vitro cytotoxicity evaluation and cell culture experiments confirmed that MACS-based mats with micro-pore structure were biocompatible with L929 cells and facilitated cellular migration into the 3D matrix, demonstrating their potential application as skin replacements for wound repair.  相似文献   

7.
Recently,thesynthesisandapplications0fbiodegradablepolydepsipeptides,alternatingcopolymersofa-aminoacidanda-hydroxyacidwithfunctionalside-chaingroupshavedrawnmoreandmoreattentionl'2.Thisisbecausethefunctionalizedpendantgroups0fthep0lydepsipeptidesmakethemusefulf0rthepreparationofavarietyofpolymer-drugconjugates.However,thepolymerizati0nofdepsipeptideswithfuncti0nalgr0upsisratherdifficultduetotheirbigstructuresandsterichindrance.Furthermore,high-molecular-weightpr0ductsofsuitablephysicalpropert…  相似文献   

8.
Electrospun nanofiber mats are inherently weak, and hence they are often deposited on mechanically-strong substrates such as porous woven fabrics that can provide good structural support without altering the nanofiber characteristics. One major challenge of this approach is to ensure good adhesion of nanofiber mats onto the substrates and to achieve satisfactory durability of nanofiber mats against flexion and abrasion during practical use. In this work, Nylon 6 nanofibers were deposited on plasma-pretreated woven fabric substrates through a new plasma-electrospinning hybrid process with the objective of improving adhesion between nanofibers and fabric substrates. The as-prepared Nylon 6 nanofiber-deposited woven fabrics were evaluated for adhesion strength and durability of nanofiber mats by carrying out peel strength and flex resistance tests. The test results showed significant improvement in the adhesion of nanofiber mats on woven fabric substrates. The nanofiber-deposited woven fabrics also exhibited good resistance to damage under repetitive flexion. X-Ray photoelectron spectroscopy and water contact angle analyses were conducted to study the plasma effect on the nanofibers and substrate fabric, and the results suggested that both the plasma pretreatment and plasma-electrospinning hybrid process introduced radicals, increased oxygen contents, and led to the formation of active chemical sites on the nanofiber and substrate surfaces. These active sites helped in creating crosslinking bonds between substrate fabric and electrospun nanofibers, which in turn increased the adhesion properties. The work demonstrates that the plasma-electrospinning hybrid process of nanofiber mats is a promising method to prepare durable functional materials.  相似文献   

9.
Hybrid nanofibers from chitosan or N‐carboxyethylchitosan (CECh) and silver nanoparticles (AgNPs) were prepared by electrospinning using HCOOH as a solvent. AgNPs were synthesized in situ in the spinning solution. HCOOH slowed down the cross‐linking of the polysaccharides with GA enabling the reactive electrospinning in the presence of poly(ethylene oxide) (PEO). EDX analyses showed that AgNPs are uniformly dispersed in the nanofibers. Since AgNPs hampered the cross‐linking of chitosan and CECh with GA in the hybrid fibers, the imparting of water insolubility to the fibers was achieved at a second stage using GA vapors. The surface of chitosan/PEO/AgNPs nanofibers was enriched in chitosan and 15 wt.‐% of the incorporated AgNPs were on the fiber surface as evidenced by XPS.

  相似文献   


10.
刘海清 《高分子科学》2010,28(5):781-788
<正>The stability ofpoly(vinyl alcohol)(PVA) nanofibrous mats in water media was improved by post-electrospinning treatments.Bifunctional glutaraldehyde(GA) in methanol was used as a crosslinking agent to stabilize PVA nanofiber,but fiber twinning was observed frequently,and the highly porous structure of PVA nanofibrous mats was destroyed when the crosslinked fiber was soaked in water.To overcome this shortcoming,chitosan(CS) was introduced into the PVA spinning solution to prepare PVA/CS composite nanofibers.Their treatment in GA/methanol solution could retain the fiber morphology of PVA/CS nanofibers and porous structure of PVA/CS nanofibrous mats even if they were soaked in aqueous solutions for 1 month.Scanning electron microscopy(SEM),X-ray diffraction(XRD),thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC) were applied to characterize the physicochemical structure and thermal properties of PVA nanofibers.It was found that the water resistance of PVA nanofibrous mats was enhanced because of the improvement of the degree of crosslinking and crystallinity in the electrospun PVA fibers after soaking in GA/methanol solution.  相似文献   

11.
A facile approach has been established to generate cellulose/chitosan hybrid nanofibers with full range of compositions by electrospinning of their ester derivatives, cellulose acetate (CA) and dibutyryl chitin (DBC), followed by alkaline hydrolysis to cellulose (Cell) and chitosan (CS). DBC was synthesized by acid-catalyzed acylation of chitin (CHI) with butyric anhydride and the newly formed butyl groups on C3 and C6 were confirmed by FT-IR and 1HNMR. DBC had robust solubility in acetone, DMAc, DMF, ethanol, and acetic acid, all except ethanol were also solvents for CA, allowing mixing of these ester derivatives. Fiber formation by electrospinning of either DBC or CA alone and together in these common solvents and their mixtures were studied. The 1/1 acetone/acetic acid was found to be the optimal solvent system to generate fibers from either DBC or CA as well as their mixtures at all CA/DBC ratios, resulting in hybrid fibers with diameters ranging from 30 to 350 nm. DBC and CA were well mixed and showed no phase separate in the hybrid fibers. Alkaline hydrolysis (NaOH) of the equal mass CA/DBC nanofibers regenerated Cell and CHI readily via O-deacylation, then proceeded to further deacetylate CHI to CS via N-deacetylation at higher alkaline concentrations and/or temperatures. Under conditions studied, hydrolysis with 5N NaOH at 100 °C for 3 h was optimal to regenerate cellulose/chitosan hybrid nanofibers.  相似文献   

12.
李新松 《高分子科学》2010,28(4):581-588
<正>Antibacterial poly(D,L-lactide)(PDLLA) fibrous membranes were developed via electrospinning,followed by surface modification which involved plasma pretreatment,UV-induced graft copolymerization of 4-vinylpyridine(4VP) and quaternization of the grafted pyridine groups with hexylbromide.The success of modification with quatemized pyridinium groups on the PDLLA fibrous membranes was ascertained by X-ray photoelectron spectroscopy(XPS).The antibacterial activities of these membranes were assessed against Gram-positive Staphylococcus aureus(S.aureus) and Gram-negative Escherichia coli(E.coli).The PDLLA fibrous membranes modified with quaternized pyridinium groups showed antibacterial efficiency against both bacteria as high as 99.999%.The results demonstrated that the antibacterial activity was based on the interaction of the positive charge of pyridinium group and negatively charged cell membrane of bacteria, resulting in loss of membrane permeability and cell leakage.  相似文献   

13.
In the presence of surfactant, water-insoluble poly(D,L-lactide) (PLA) was dispersed into narrowly distributed nanoparticles stable in water via microphase inversion. The structure and degradation of such formed nanoparticles were investigated by a combination of static and dynamic laser light scattering. Our results revealed that the degradation rate increased with the temperature and pH so that the degradation could be regulated from minutes to days. Using anionic sodium dodecyl sulfate (SDS) as stabilizer resulted in a slower degradation than using cationic hexadecyltrimethylammonium bromide (HTAB). The phthalocyanine chromophores (PC) could be encapsulated inside these PLA nanoparticles. The degradation of individual PLA nanoparticles led to a controllable releasing of PC. The absorption and fluorescence studies revealed a correlation between the degradation and the releasing of PC. Our results showed that a higher PC/PLA ratio could lead to a faster degradation.  相似文献   

14.
Water holding capacity becomes essential for hygiene applications including baby diapers. Microfibers of hydrophilic polymers have been useful source for such applications. While, super hydrophilic and stable nanofibers incorporation with functional antibacterial agent are essential to get higher absorption of water along with antimicrobial activity against harmful bacteria. In current work, hydrophobic polymeric nanofibers are transformed to super hydrophilic nanofibers by addition of copper (II) oxide (CuO hereafter) nanoparticles. CuO nanoparticles provided two distinctive properties to existing nanofibers. Firstly, nanofibers surface area was significantly increased, and secondly copper (II) oxide itself is hydrophilic material which imparted hydrophilicity to base polymer. Polyacrylonitrile, crosslinked Polyvinyl Alcohol, and PICT were selected as super hydrophobic polymeric nanofibers. Copper II oxide nanoparticles (same concentration) were added in all polymer solution and electrospun. Surface, morphological, and hydrophilic properties were characterized and it was concluded that copper II oxide is suitable for transforming hydrophobic nanofibers to super hydrophilic nanofibers. Water holding capacity (WHC) was also improved for all prepared nanofiber mats. WHC for PVA/CuO, PAN/CuO, and PICT/CuO were recorded an average of 23 g/g, 21 g/g, and 18 g/g respectively. Combining all useful results from possible characterization of nanofiber mats, it is expected that CuO nanoparticles loaded nanofibers will have potential application as antibacterial, sustainable, and stable replacement of hygiene products.  相似文献   

15.
Novel hybrid polyvinyl butyral nanofibers have been developed for antimicrobial applications. The nanofiber mats were obtained from a needleless rod electrospinning system. The novel inorganic antibacterial agents were incorporated into the nanofibers, and their antibacterial activity was compared. The obtained nanoparticle/nanofiber hybrid mats have a good surface morphology. The results indicated that the CuO, ZnO, ZnO/TiO2, and AgNO3 nanoparticle‐incorporated nanofiber layers have excellent antibacterial activity against to Escherichia coli compared with TiO2, SnO2, and ZrO2 ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine.  相似文献   

17.
A facile spinning‐based strategy was developed to fabricate chitosan (CS) surface nanofiber‐based affinity membranes for protein adsorption. The core–shell nanofiber mat of nylon 6–CS was prepared via coaxial solution blowing process. The nanofibers have a diameter range of 60–300 nm. The core–shell structure was confirmed by transmission electron microscopy, and CS was observed as a thin layer that uniformly adhered to the core. The dye ligand of cibacron blue F3GA (CB F3GA) was further covalently immobilized on the nanofibers with a content of 425 µmol/g. The pristine and CB F3GA‐attached mats were studied in protein adsorption. High bovine serum albumin adsorption capacities of 91.9 and 219.6 mg/g were obtained for pristine and CB F3GA‐attached mats, respectively. Given its properties of high flux rate and low pressure drop, CB F3GA‐attached nylon 6–CS nanofiber mat meets the requirements of highly effective affinity membrane chromatography. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The purpose of this work is to develop a novel type of tissue engineering scaffold or drugs delivery carrier with the capability of encapsulation and controlled release drugs. In this study, Rhodamine B and Bovine Serum Albumin (BSA) were successfully incorporated into nanofibers by means of emulsion electrospinning. The morphology of composite nanofibers was studied by Scanning Electron Microscopy (SEM). The composite nanofibrous mats made from emulsion electrospinning were characterized by water contact angle measurement and X-ray diffraction. In vitro dual drugs release behaviors from composite nanofibrous mats were investigated. The results indicated that the incorporated drug and/or proteins in composite fibrous mats made from electrospinning could be control released by adjusting the processes of emulsions preparation.  相似文献   

19.
A new method is presented for functionalizing electrospun nanofibers with GAGs and growth factors by PEM deposition. Electrospun chitosan nanofibers, spun from trifluoroacetic acid and dichloromethane, were coated with PEMs, using the polysaccharides heparin and N,N,N-trimethyl chitosan. FGF-2 was adsorbed on the PEM-coated nanofibers. Nanofiber neutralization, PEM construction, and FGF-2 adsorption were monitored using FT-IR spectroscopy and X-ray photoelectron spectroscopy. Alcian blue staining was used to confirm the presence of heparin. SEM was used to study nanofiber morphology.  相似文献   

20.
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)Cu(Ⅱ)Zn(Ⅱ)Cd(Ⅱ)Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号