首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用共沉淀法制备CuZnAl类水滑石,将其担载于活化碳纤维(ACFs)表面,通过焙烧还原合成功能化复合催化剂(CuZnAl/ACFs)。借助XRD、FT-IR及N2吸附-脱附等方法对该复合物进行表征,并将其应用于合成气制备低碳醇的反应中,进行活性评价。结果表明,复合催化剂中活性组分在碳纤维表面均匀分散,碳纤维表面催化剂的颗粒尺寸减小,比表面积增大。ACFs的导电性加速醇合成过程中的电子传递,促进反应进行,因而CO转化率的提高(最高可达47%)。同时,ACFs提高催化剂表面ZnO的分散度,从而促进Cu与ZnO形成金属氧化物界面。这有利于低碳醇的生成,因而使C2以上醇的选择性高达39%。  相似文献   

2.
采用共沉淀法制备CuZnAl类水滑石,将其担载于活化碳纤维(ACFs)表面,通过焙烧还原合成功能化复合催化剂(CuZnAl/ACFs)。借助XRD、FT-IR及N2吸附-脱附等方法对该复合物进行表征,并将其应用于合成气制备低碳醇的反应中,进行活性评价。结果表明,复合催化剂中活性组分在碳纤维表面均匀分散,碳纤维表面催化剂的颗粒尺寸减小,比表面积增大。ACFs的导电性加速醇合成过程中的电子传递,促进反应进行,因而CO转化率的提高(最高可达47%)。同时,ACFs提高催化剂表面ZnO的分散度,从而促进Cu与ZnO形成金属氧化物界面。这有利于低碳醇的生成,因而使C2以上醇的选择性高达39%。  相似文献   

3.
A study was carried out on the properties of Ni/Al2O3 and Cu-ZnO/Al2O3 composites supported on ceramic honeycomb monoliths made from synthetic cordierite in the carbon dioxide conversion of methane and the partial oxidation of methanol. The structured nickel-alumina catalysts are significantly more efficient than the conventional granulated catalysts. The improved working stability of these catalysts was achieved by adjusting the acid-base properties of the surface by introducing sodium and potassium oxides, which leads to inhibition of surface carbonization. The hydrogen yield was close to 90% in the partial oxidation of methanol with a stoichiometric reagent ratio in the presence of the Cu-ZnO/Al2O3/cordierite catalyst. A synergistic effect was found, reducing the selectivity of CO formation in the presence of the Cu-ZnO catalyst relative to samples derived from the individual components Cu and ZnO. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 299–306, September–October, 2007.  相似文献   

4.
采用完全液相技术结合热解方法制备了固定床用CuZnAl催化剂,研究表明,该方法能保留完全液相技术赋予催化剂的特殊性能,可以发展成为将完全液相技术拓展于固定床催化剂的通用方法.在所制催化剂中引入碱助剂同样可以增加C2+醇的选择性,但主要不是异丁醇,与现行常规方法制备的催化剂不同.通过对催化剂进行XRD、H2-TPR、NH3-TPD-MS、BET等表征,结果表明,不同碱助剂对催化剂的作用方式和影响程度不同,使得催化剂中Cu物种的存在形式和数量、催化剂表面的酸碱性和量以及孔道结构存在差异,进而对催化剂性能产生影响.  相似文献   

5.
Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.  相似文献   

6.
采用并流共沉淀法在不同焙烧温度下制备K改性Ag-Fe/ZnO-ZrO2催化剂,考察不同焙烧温度对催化剂CO加氢合成低碳混合醇醚反应性能的影响。通过N2物理吸附(N2-adsorption)、X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、一氧化碳程序升温脱附(CO-TPD)等手段对催化剂进行表征。结果表明,250 ℃焙烧的催化剂,由于焙烧温度较低,表面尚未形成足够多的活性位,未能达到最佳的催化性能;300 ℃焙烧的催化剂,其CO转化率最高、醇醚选择性较高,醇醚时空产率达到最大值。随着焙烧温度进一步升高,CO转化率逐渐降低,醇选择性先降低后增大,二甲醚(DME)选择性逐渐增大,醇醚时空产率逐渐降低。催化剂性能主要与其比表面积、还原性能、所含银铁复合物分散度及CO吸脱附性能有关,即比表面积较大、易于被还原、银铁复合物分散度较高以及较多的CO吸脱附活性位,有利于催化剂CO加氢转化。催化剂表面活性位对CO的非解离吸附强度降低,有利于醇醚产物的生成;而对CO的解离吸附强度增强,则不利于烃类产物的生成。  相似文献   

7.
采用完全液相法在不同热处理时间下制备了CuZnAl催化剂,利用X射线光电子能谱(XPS)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、NH3吸附-脱附(NH3-TPD-MS)和N2物理吸附-脱附等方法对其结构进行了表征分析,并在浆态床反应器上对其催化合成气制C2+OH的性能进行了研究。研究发现,延长热处理时间增强了催化剂中Cu和Al物种之间的相互作用力,改变了其中Cu+的量,从而影响Cu+-Cu0活性位的协同作用。同时,热处理时间的延长减少了催化剂的表面酸量,增大了孔容和孔径;催化剂表面较少的弱酸位及较大孔容和孔径均有利于C2+OH的生成。热处理时间为7 h时所制备的CuZnAl催化剂表现出了优良的低碳醇合成催化活性,CO转化率和总醇中C2+OH的质量分数分别达到了38.1%和65.9%。  相似文献   

8.
In this paper, a new catalyst system Cu‐Mn‐(M)/γ‐Al2O3 was developed for the directly synthesis dimethyl ether (DME) from synthesis gas in a fixed‐bed reactor. The catalysts with different n (Cu) : n (Mn) ratios, several promoter M (M is one of Zn, Cr, W, Mo, Fe, Co or Ni) were prepared and tested. The results showed the catalysts have a high conversion of CO and a high DME selectivity. The DME yield in tail gas reached 46.0% (at 63.27% conversion of CO) at 2.0 MPa, 275°C, 1500 h?1 with the Cu2Mn4Zn/γ‐Al2O3 catalyst.  相似文献   

9.
The single‐step syngas‐to‐dimethyl ether (STD) process entails economic and technical advantages over the current industrial two‐step process. Pd/ZnO‐based catalysts have recently emerged as interesting alternatives to currently used Cu/ZnO/Al2O3 catalysts, but the nature of the active site(s), the reaction mechanism, and the role of Pd and ZnO in the solid catalyst are not well established. Now, Zn‐stabilized Pd colloids with a size of 2 nm served as the key building blocks for the methanol active component in bifunctional Pd/ZnO‐γ‐Al2O3 catalysts. The catalysts were characterized by combining high‐pressure operando X‐ray absorption spectroscopy and DFT calculations. The enhanced stability, longevity, and high dimethyl ether selectivity observed makes Pd/ZnO‐γ‐Al2O3 an effective alternative system for the STD process compared to Cu/ZnO/γ‐Al2O3.  相似文献   

10.
《Comptes Rendus Chimie》2015,18(3):302-314
In order to investigate the methanol synthesis reaction from CO2/H2, a comparative study of the reactivity of formate species on different types of catalysts and catalyst supports has been carried out. Formic acid was adsorbed on water–gas shift catalysts, Cu/ZnO/Al2O3 methanol synthesis catalyst and ZnO/Al2O3 support, Cu/ZnO/ZrO2 and Cu/ZnO/CeO2 methanol synthesis catalysts as well as their corresponding supports ZnO/ZrO2 and ZnO/CeO2. Superior reactivity and selectivity of dedicated methanol synthesis catalysts was evidenced by their behavior during the subsequent heating ramp, when these samples showed the simultaneous presence of formates and methoxy species and a higher stability of these reaction intermediates in the usual temperature range for the methanol synthesis reaction.  相似文献   

11.
Our groups studies on Cu/ZnO-based catalysts for methanol synthesis via hydrogenation of CO2 and for the water-gas shift reaction are reviewed. Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions were investigated. The addition of ZnO to Cu-based catalyst supported on Al2O3, ZrO2 or SiO2 improved its specific activity for methanol synthesis and the reverse water-gas shift reaction, but did not improve its specific activity for methanol steam reforming and the water-gas shift reaction. Methanol synthesis from CO2 and H2 over Cu/ZnO-based catalysts was extensively studied under a joint research project between National Institute for Resources and Environment (NIRE; one of the former research institutes reorganized to AIST) and Research Institute of Innovative Technology for the Earth (RITE). It was suggested that methanol should be produced via the hydrogenation of CO2, but not via the hydrogenation of CO, and that H2O produced along with methanol should greatly suppress methanol synthesis. The Cu/ZnO-based multicomponent catalysts such as Cu/ZnO/ZrO2/Al2O3 and Cu/ZnO/ZrO2/Al2O3/Ga2O3 were highly active for methanol synthesis from CO2 and H2. The addition of a small amount of colloidal silica to the multicomponent catalysts greatly improved their long-term stability during methanol synthesis from CO2 and H2. The purity of the crude methanol produced in a bench plant was 99.9 wt% and higher than that of the crude methanol from a commercial methanol synthesis from syngas. The water-gas shift reaction over Cu/ZnO-based catalysts was also studied. The activity of Cu/ZnO/ZrO2/Al2O3 catalyst for the water-gas shift reaction at 523 K was less affected by the pre-treatments such as calcination and treatment in H2 at high temperatures than that of the Cu/ZnO/Al2O3 catalyst. Accordingly, the Cu/ZnO/ZrO2/Al2O3 catalyst was considered to be more suitable for practical use for the water-gas shift reaction. The Cu/ZnO/ZrO2/Al2O3 catalyst was also highly active for the water-gas shift reaction at 673 K. Furthermore, a two-stage reaction system composed of the first reaction zone for the water-gas shift reaction at 673 K and the second reaction zone for the reaction at 523 K was found to be more efficient than a one-stage reaction system. The addition of a small amount of colloidal silica to a Cu/ZnO-based catalyst greatly improved its long-term stability in the water-gas shift reaction in a similar manner as in methanol synthesis from CO2 and H2.  相似文献   

12.
采用共浸渍法制备了不同Ce含量的Ce-Cu-Co/CNTs 催化剂, 考察了其在合成气制低碳醇反应中的催化性能, 借助X射线衍射(XRD)、程序升温还原(H2-TPR)、N2吸脱附实验(BET)、透射电镜(TEM)和CO程序升温脱附(CO-TPD)对这些催化剂进行了表征. 结果表明, 当Ce的质量分数为3%时, 低碳醇的时空收率和选择性达到最高, 分别为696.4 mg·g-1·h-1和59.7%, 其中乙醇占总醇的46.8%, 适量Ce的添加能提高Cu物种在催化剂上的分散度和催化剂的还原性能, 能显著地增加催化剂吸附CO的能力, 促进合成醇活性位的形成, 进而明显提高催化剂的活性和总醇的选择性. 研究表明, 将具有高活性和高碳链增长能力的CuCo基催化剂与碳纳米管的限域效应结合, 可实现缩窄产物分布、大幅度提高乙醇选择性的目的.  相似文献   

13.
14.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

15.
Metal oxide-modified ZnO /SiO2 catalysts were studied for the cyclo-dehydrogenation of ethylenediamine with propyleneglycol to 2-methylpyrazine at 633 K. The ZnO/SiO2 catalyst showed fairly good ethylenediamine conversion and quantitative propyleneglycol conversion with about 60 mol% of 2-methylpyrazine selectivity, which is due to the existence of large amount of unconverted intermediate, 2-methylpiperazine. Metal oxide (CuO, NiO, Co3O4)-modified ZnO/SiO2 catalysts were prepared to facilitate the dehydrogenation of 2-methylpiperazine to 2-methylpyrazine. About 82 mol% of 2-methylpyrazine selectivity was achieved on CuO and Co3O4 modified ZnO/SiO2 catalysts, with significant increases of pyrazine selectivity. The catalytic properties of the metal oxidemodified ZnO/SiO2 catalysts, pretreated with hydrogen gas as in the cyclo-dehydrogenation, were compared using the well-known probe reaction, the dehydrogenation/ dehydration of cyclohexanol to cyclohexanone or phenol/cyclohexene. The selectivities of pyrazine in the cyclo-dehydrogenation on the metal oxide-modified ZnO/SiO2 catalysts were correlated with the phenol selectivities of the probe reaction. It is proposed that the metallic site of catalyst is responsible for the formation of pyrazine from ethylenediamine dimerization. The improved 2-methylpyrazine yield on CuO/ZnO/SiO2 catalyst was explained by the proper adjustment of catalytic properties, which could be differentiated by the phenol selectivity in the cyclohexanol probe reaction. Thus, the large enhancement of 2-methylpiperazine dehydrogenation to 2-methylpyrazine and the suppression of excess pyrazine formation are supposed to occur on the metallic Cu formed in situ during the reaction during the cyclo-dehydrogenation of ethylenediamine with propyleneglycol.  相似文献   

16.
采用共沉淀法制备了Cu/Zn/La/ZrO2催化剂,并浸渍K对其进行改性.以合成气合成异丁醇为探针反应,考察了焙烧温度对K-Cu/Zn/La/ZrO2催化剂合成反应的影响.采用XRD、TG、BET、NH3-TPD、H2-TPR、Raman及XPS等手段表征了催化剂的结构和表面性质.结果表明,催化剂体相结构、比表面积与其催化活性没有直接关系;催化剂表面强酸中心的存在不利于异丁醇的生成;Cu-Zn-Zr活性组分间协同作用对催化剂活性影响很大,450 ℃焙烧温度下,Cu-Zn-Zr活性组分间协同作用最强,CuO最容易还原,催化活性最高,此时CO的转化率(物质的量)达到69.47%,醇中异丁醇的选择性(质量分数)为19.09%,甲醇+异丁醇的选择性(质量分数)为95.02%.  相似文献   

17.
Higher alcohol has been considered as a potential fuel additive. Higher alcohol, including C2–C4 alcohol was synthesized by catalytic conversion of syngas (with a ratio of CO/H2?=?1) derived from natural gas over modified Cu/ZnO/Al2O3 catalyst. Modified Cu/ZnO/Al2O3 catalysts promoted by alkali metal (Li) for higher alcohol synthesis (HAS) were prepared at different pH (6, 6.5, 7, 8, and 9) by co-precipitation to control Cu surface area and characterized by N2 physisorption, XRD, SEM, H2-TPR and TPD. The HAS reaction was carried out under a pressure of 45 bar, GHSV of 4000 h?1, ratio of H2/CO?=?1, and temperature ranges of 240 and 280 °C. It was found that the malachite phase of copper causes the size of copper to be small, which is suitable for methanol synthesis. Methanol and HAS share a common catalytic active site and intermediate. It was also found that the productivity to higher alcohol was correlated with Cu surface area.  相似文献   

18.
《Mendeleev Communications》2022,32(5):672-674
Supported bimetallic Cu–Fe catalysts revealed high activity and selectivity in isoprenyl acetate hydrogenation to isoprenol under mild reaction conditions (2 MPa H2 and 170 °C). The nature of the carrier has a significant impact on the catalytic properties of Cu–Fe catalysts. The best catalytic properties were found for the 5% Cu–5% Fe/Al2O3 bimetallic catalyst, which provides a 98% isoprenyl acetate conversion in 4 h with the isoprenol selectivity of 82%.  相似文献   

19.
碱金属助剂对MnOx/ZrO2催化合成   总被引:6,自引:0,他引:6  
 研究了MnOx/ZrO2催化剂中添加的碱金属助剂对以合成气合成甲醇及异丁醇反应的影响,并采用BET,XRD和NH3-TPD等表征技术,考察了碱金属助剂的添加对催化剂结构和表面性质的影响.结果表明,碱金属助剂对MnOx/ZrO2催化剂的催化性能有明显影响.在实验条件下,添加1.0%K(K2CO3作为前驱物)的催化剂,其催化性能最好,醇的选择性高达74.8%,异丁醇选择性达16.3%.添加碱金属助剂也使MnOx/ZrO2催化剂的表面性质发生了很大变化,从而影响催化剂的催化性能.  相似文献   

20.
采用共沉淀法制备Cu/ZnO催化剂、水热合成法制备H-β分子筛、通过物理包膜法制备了具有核壳结构的Cu/ZnO@H-β-P催化剂,并用于合成气制备液化石油气(LPG)反应。通过XRD、NH3-TPD、BET和SEM-EDS等手段对催化剂进行了表征,利用固定床连续反应装置对催化剂进行了活性评价。结果表明,Cu/ZnO@H-β-P催化剂是具有中孔的核壳结构材料,其协同作用打破了原有的热力学平衡,促进了甲醇→DME→LPG串联反应的连续进行。与物理混合的Mix-Cu/ZnO-H-β催化剂相比,Cu/ZnO@H-β-P催化剂的CO转化率和LPG选择性更高,空速和反应温度对催化剂活性影响明显,最佳空速和反应温度分别为2 400 h~(-1)和350℃。使用Cu/ZnO@H-β-P催化剂在最佳条件下进行合成气制备LPG反应,CO转化率达到了57.22%,LPG选择性达到了60.52%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号