首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Adsorbed poly(ethylene‐stat‐vinyl acetate) (PEVAc) on fumed silica was studied using temperature‐modulated differential scanning calorimetry (TMDSC) and FT‐IR spectroscopy. The properties of the copolymers were compared with poly(vinyl acetate) (PVAc) and low density polyethylene (LDPE) as references. TMDSC analysis of the copolymer‐silica samples in the glass transition region was complicated for the copolymers because of the ethylene crystallinity. Nevertheless, examination of the glass transition region for small adsorbed amounts of these copolymers indicated the presence of tightly‐ and loosely‐bound polymer segments, similar to other polymers which have an attraction to silica. Compared with bulk polymers with the same composition, the tightly‐bound polymers showed an increased glass transition temperature (Tg) and a loosely‐bound fraction with a lower Tg than bulk. FT‐IR spectra of the surface copolymers indicated that the fraction of bound carbonyls (p) increased as the fraction of vinyl acetate in the copolymers decreased, consistent with the notion that the carbonyls from vinyl acetate preferentially find their way to the silica surface. Spectra from samples with different adsorbed amounts of polymer were used to obtain the amount of bound polymer (Mb) and the ratio of molar absorption coefficients of bound carbonyls to free carbonyls (X). The copolymers had very large p values (up to 0.8) at small adsorbed amounts and dependent on the composition of the polymer. However, an analysis of the bound fractions, based on only the vinyl acetate groups, superimposed the data, suggesting that the ethylene units simply dilute the vinyl acetate groups in the surface polymer. The sample with the smallest fraction of vinyl acetate did not show this behavior and may be considered to be “carbonyl poor.” © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 727–736  相似文献   

2.
Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol‐directed C(sp2)‐H functionalization and oxidative annulation with alkynes to give spiroindenes containing all‐carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O‐bound rhodium enolate into the C‐bound isomer, appear to be critical for high enantiomeric excesses.  相似文献   

3.
Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol‐directed C(sp2)‐H functionalization and oxidative annulation with alkynes to give spiroindenes containing all‐carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O‐bound rhodium enolate into the C‐bound isomer, appear to be critical for high enantiomeric excesses.  相似文献   

4.
Saturation transfer difference (STD)‐NMR spectroscopy was used to probe experimentally the bioactive solution conformation of the carbohydrate mimic MDWNMHAA 1 of the O‐polysaccharide of Shigella flexneri Y when bound to its complementary antibody, mAb SYA/J6. Molecular dynamics simulations using the ZymeCAD? Molecular Dynamics platform were also undertaken to give a more accurate picture of the conformational flexibility and the possibilities for bound ligand conformations. The ligand topology, or the dynamic epitope, was mapped with the CORCEMA‐ST (COmplete Relaxation and Conformational Exchange Matrix Analysis of Saturation Transfer) program that calculates a total matrix analysis of relaxation and exchange effects to generate predicted STD‐NMR intensities from simulation. The comparison of these predicted STD enhancements with experimental data was used to select a representative binding mode. A protocol that employed theoretical STD effects calculated at snapshots during the entire course of a molecular dynamics (MD) trajectory of the peptide bound to the Fv portion of the antibody, and not the averaged atomic positions of receptor–ligand complexes, was also examined. In addition, the R factor was calculated on the basis of STD (fit) to avoid T1 bias, and an effective R factor, Reff, was defined such that if the calculated STD (fit) for proton k was within error of the experimental STD (fit) for proton k, then that calculated STD (fit) for proton k was not included in the calculation of the R factor. This protocol was effective in deriving the antibody‐bound solution conformation of the peptide which also differed from the bound conformation determined by X‐ray crystallography; however, several discrepancies between experimental and calculated STD (fit) values were observed. The bound conformation was therefore further refined with a simulated annealing refinement protocol known as STD‐NMR intensity‐restrained CORCEMA optimization (SICO) to give a more accurate representation of the bound peptide epitope. Further optimization was required in this case, but a satisfactory correlation between experimental and calculated STD values was obtained. Attempts were also made to obtain STD enhancements with a synthetic pentasaccharide hapten, corresponding to the O‐polysaccharide, while bound to the antibody. However, unfavorable kinetics of binding in this system prevented sufficient STD build‐up, which, in turn, hindered a rigorous analysis via full STD build‐up curves.  相似文献   

5.
The stereoselective epoxidation of styrene was catalyzed by H2O2‐dependent cytochrome P450SPα in the presence of carboxylic acids as decoy molecules. The stereoselectivity of styrene oxide could be altered by the nature of the decoy molecules. In particular, the chirality at the α‐positions of the decoy molecules induced a clear difference in the chirality of the product: (R)‐ibuprofen enhanced the formation of (S)‐styrene oxide, whereas (S)‐ibuprofen preferentially afforded (R)‐styrene oxide. The crystal structure of an (R)‐ibuprofen‐bound cytochrome P450SPα (resolution 1.9 Å) revealed that the carboxylate group of (R)‐ibuprofen served as an acid–base catalyst to initiate the epoxidation. A docking simulation of the binding of styrene in the active site of the (R)‐ibuprofen‐bound form suggested that the orientation of the vinyl group of styrene in the active site agreed with the formation of (S)‐styrene oxide.  相似文献   

6.
By using the Weinstein interval or coupling the Temple lower bound to a variational upper bound one can in principle construct an error bar about the ground‐state energy of an electronic system. Unfortunately there are theoretical and calculational issues which complicate this endeavor so that at best only an upper bound to the electronic energy has been practical in systems with more than a few electrons. The calculational issue is the complexity of 〈H2〉 which is necessary in the Temple or Weinstein approach. In this work we provide a way to approximate the 〈H2〉 to any desired accuracy using much simpler 〈H〉‐like information so that the lower bound calculations are more practical. The helium atom is used as a testing ground in which we obtain approximate error bars for the ground‐state energy of [?2.904230, ?2.903721] hartree using the variational energy with the Temple lower bound and [?2.919098, ?2.888344] hartree for the Weinstein interval. For comparison, the slightly larger error bars using the exact value of 〈H2〉 are: [?2.904358, ?2.903721] hartree and [?2.919765, ?2.887677] hartree, respectively. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
An unusual tetra‐nuclear linear cyanido‐bridged complex [Ru2(μ‐ap)4‐CN‐Ru2(μ‐ap)4](BPh4) ( 1 ) (ap=2‐anilinopyridinate) has been synthesized and well characterized. The crystallographic data, magnetic measurement, IR, EPR and theoretical calculation results demonstrate that complex 1 is the first example of mixed spin Ru25+‐based complex with uncommon electronic configurations of S=1/2 for the cyanido‐C bound Ru25+ and S=3/2 for the cyanido‐N bound Ru25+. This phenomenon can be understood by the theoretical calculation results that from the precursor Ru2(μ‐ap)4(CN) (S=3/2) to complex 1 the energy gap between π* and δ* orbitals of the cyanido‐C bound Ru25+ core increases from 0.57 to 1.61 eV due to the enhancement of asymmetrical π back‐bonding effect, but that of the cyanido‐N bound Ru25+ core is essential identical (0.56 eV). Besides, the analysis of UV/Vis‐NIR spectra suggests that there exists metal to metal charge transfer (MMCT) from the cyanido‐N bound Ru25+ (S=3/2) to the cyanido‐C bound Ru25+ (S=1/2), supported by the TDDFT calculations.  相似文献   

8.
The development of small molecules that can recognize specific RNA secondary and tertiary structures is currently an important research topic for developing tools to modulate gene expression and therapeutic drugs. Expanded CUG trinucleotide repeats, known as toxic RNA, capture the splicing factor MBNL1 and are causative of neurological disorder myotonic dystrophy type 1 (DM1). Herein, the rational molecular design, synthesis, and binding analysis of 2,9‐diaminoalkyl‐substituted 1,10‐phenanthroline (DAP), which bound to CUG trinucleotide repeats, is described. The results of melting temperature (Tm) analyses, surface plasmon resonance (SPR) assay, and electrospray spray ionization time‐of‐flight (ESI‐TOF) mass spectrometry showed that DAP bound to r(CUG)9 but not to r(CAG)9 and r(CGG)9. The dual luciferase assay clearly indicated DAP bound to the r(CUG)n repeat by affecting the translation in vitro.  相似文献   

9.
Water‐soluble diblock copolymer, poly(N‐isopropylacrylamide)‐block‐poly(N‐vinyl‐2‐pyrroridone) (PNIPAMmb‐PNVPn), was found to associate with fullerene (C60), and thus C60 can be solubilized in water. The 63C60/PNIPAMmb‐PNVPn micelle formed a core‐shell micelle‐like aggregate comprising a C60/PNVP hydrophobic core and a thermoresponsive PNIPAM shell. The C60‐containing polymer micelle formation and its thermoresponsive behavior were characterized using light scattering and 1H NMR techniques. The hydrodynamic radius (Rh) of the C60‐bound polymer micelle increased with increasing temperature, which was ascribed to the hydrophobic association between dehydrated PNIPAM shells above lower critical solution temperature (LCST). 1H NMR data suggest that the motion of the PNIPAM block is restricted above LCST due to the dehydration of the PNIPAM shell in water. The generation of singlet oxygen by photosensitization by the C60‐bound polymer micelle was confirmed from photooxidation of 9,10‐anthracenedipropionic acid. Furthermore, DNA was found to be cleaved by visible light irradiation in the presence of the C60‐bound polymer micelle. Therefore, there may be a hope for a pharmaceutical application of the C60‐bound polymer micelle to cancer photodynamic therapy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

10.
A new solid‐phase approach for the synthesis of 2‐amido‐1,3,4‐oxadiazoles has been developed. In this synthesis, hydroxypentyl JandaJel polymer support was treated with excess of oxalyl chloride to give resin‐bound 2‐chloro‐2‐oxoacetate, and this intermediate was then coupled with different hydrazides to give resin‐bound 2‐(N′‐acylhydrazinyl)‐2‐oxoacetate. Intramolecular dehydrative cyclization of resulting resin‐bound linear precursor followed by direct amidation using aluminum amide reagent provided 5‐substituted 1,3,4‐oxadiazoles as 2‐carboxamides. To explore the scope of this reaction sequence, we synthesized a small set of library using a combination of hydrazides and amines, and the desired products were obtained in good to high yields.  相似文献   

11.
Coα‐(1H‐Imidazol‐1‐yl)‐Coβ‐methylcob(III)amide ( 4 ) was synthesized by methylation with methyl iodide of (1H‐imidazol‐1‐yl)cob(I)amide, obtained by electrochemical reduction of Coα‐(1H‐imidazol‐1‐yl)‐Coβ‐cyanocob(III)amide ( 5 ). The spectroscopic data and a single‐crystal X‐ray structure analysis indicated 4 to exhibit a base‐on constitution in solution and in the crystal. The crucial lengths of the axial Co−N and Co−CH3 bonds also emerged from the crystallographic data and were found to be smaller by 0.1 and 0.02 Å, respectively, than those in methylcob(III)alamin ( 2 ). The data of 4 support the view, that the `long' axial Co−N bonds as determined by X‐ray crystallography for the B12‐dependent methionine synthase, for methylmalonyl‐CoA mutase, and for glutamate mutase represent stretched Co−N bonds. The thermodynamic effect (the `trans influence') of the 1H‐imidazole base in 4 on the organometallic reactivity of this model for protein‐bound organometallic B12 cofactors was examined by studying Me‐group‐transfer equilibria in aqueous solution and using (5′,6′‐dimethyl‐1H‐benzimidazol‐1‐yl)cobamides (cobalamins) as reaction partners (Schemes 2 – 5, Table). In comparison with methylcob(III)alamin ( 2 ), 4 was found to be destabilized for an abstraction of the Co‐bound Me group by a CoIII electrophile. In contrast, the abstraction of the Co‐bound Me group by a radical(oid) CoII species was not significantly influenced thermodynamically by the exchange of the nucleotide base. Likewise, exploratory Me‐group‐transfer experiments with Me−CoIII and nucleophilic CoI corrinoids at pH 6.8 provided an apparent equilibrium constant near unity. However, this finding also was consistent with partial protonation of the imidazolylcob(I)amide at pH 6.8, suggesting an interesting pH dependence of the Megroup‐transfer equilibrium near neutral pH. Therefore, the replacement of the 5′,6′‐dimethyl‐1H‐benzimidazole base by an 1H‐imidazole moiety, as observed in methyl transferases and in C‐skeleton mutases, does not by itself strongly alter the inherent reactivity of the B12 cofactors in the crucial homolytic and nucleophilic‐heterolytic reactions involving the organometallic bond, but may help to enhance the control of the organometallic reactivity by protonation/deprotonation of the axial base.  相似文献   

12.
Recently, a new class of copolymers, so‐called protein‐like copolymers has been predicted theoretically by computer simulation. In these copolymers, the conformation of the copolymer determines the exposure of certain comonomer units to the outer solution. Depending on the conformation, copolymer molecules with essentially the same comonomer composition could have pronouncedly different properties. The authors demonstrated experimentally such behavior in case of poly[(N‐vinylcaprolactam)‐co‐(N‐vinylimidazole)] (Dokl. Chem. 2001 , 375, 637). One more group of copolymers with protein‐like behavior is copolymers of N‐isopropylacrylamide with N‐vinylimidazole. Poly[(N‐isopropylacrylamide)‐co‐(N‐vinylimidazole)] was synthesized by radical polymerization and separated into two fractions using immobilized metal affinity chromatography on Cu2+‐loaded iminodiacetic acid sepharose CL 6B (Cu2+‐IDA‐sepharose). The unbound fraction which passed through the column and bound fraction eluted with Ethylenediaminetetraacetic acid, disodium salt (EDTA) solution differed significantly in molecular weight, 1.4×106 and 1.35×105, respectively but were very close in comonomer composition, 7.8 and 9.1 mol‐% of imidazole, respectively. The composition of bound fraction was confirmed by titration of imidazole groups. Despite close chemical composition, the bound and unbound fraction behaved differently with respect to temperature‐induced phase separation at different pH values, the dependence of hydrodynamic diameter on pH and concentration of Cu2+‐ions, and the coprecipitation of soybean trypsin inhibitor with the copolymer in the presence of Cu2+‐ions. The differences in the behavior of copolymer fractions are rationalized assuming that the bound fraction presents a protein‐like copolymer.  相似文献   

13.
Two (ONO pincer)ruthenium‐complex‐bound norvalines, Boc?[Ru(pydc)(terpy)]Nva?OMe ( 1 ; Boc=tert‐butyloxycarbonyl, terpy=terpyridyl, Nva=norvaline) and Boc?[Ru(pydc)(tBu‐terpy)]Nva?OMe ( 5 ), were successfully synthesized and their molecular structures and absolute configurations were unequivocally determined by single‐crystal X‐ray diffraction. The robustness of the pincer Ru complexes and norvaline scaffolds against acidic/basic, oxidizing, and high‐temperature conditions enabled us to perform selective transformations of the N‐Boc and C?OMe termini into various functional groups, such as alkyl amide, alkyl urea, and polyether groups, without the loss of the Ru center or enantiomeric purity. The resulting dialkylated Ru‐bound norvaline, n‐C11H23CO?l ‐[Ru(pydc)(terpy)]Nva?NH‐n‐C11H23 (l ‐ 4 ) was found to have excellent self‐assembly properties in organic solvents, thereby affording the corresponding supramolecular gels. Ru‐bound norvaline l ‐ 1 exhibited a higher catalytic activity for the oxidation of alcohols by H2O2 than parent complex [Ru(pydc)(terpy)] ( 11 a ).  相似文献   

14.
The NCN‐pincer Pd‐complex‐bound norvalines Boc‐D /L ‐[PdCl(dpb)]Nva‐OMe ( 1 ) were synthesized in multigram quantities. The molecular structure and absolute configuration of 1 were unequivocally determined by single‐crystal X‐ray structure analysis. The robustness of 1 under acidic/basic conditions provides a wide range of N‐/C‐terminus convertibility based on the related synthetic transformations. Installation of a variety of functional groups into the N‐/C‐terminus of 1 was readily carried out through N‐Boc‐ or C‐methyl ester deprotection and subsequent condensations with carboxylic acids, R1COOH, or amines, R2NH2, to give the corresponding N‐/C‐functionalized norvalines R1‐D /L ‐[PdCl(dpb)]Nva‐R2 2 – 9 . The dipeptide bearing two Pd units 10 was successfully synthesized through the condensation of C‐free 1 with N‐free 1 . The robustness of these Pd‐bound norvalines was adequately demonstrated by the preservation of the optical purity and Pd unit during the synthetic transformations. The lipophilic Pd‐bound norvalines L ‐ 2 , Boc‐L ‐[PdCl(dpb)]Nva‐NH‐n‐C11H23, and L ‐ 4 , n‐C4H9CO‐L ‐[PdCl(dpb)]Nva‐NH‐n‐C11H23, self‐assembled in aromatic solvents to afford supramolecular gels. The assembled structures in a thermodynamically stable single crystal of L ‐ 2 and kinetically stable supramolecular aggregates of L ‐ 2 were precisely elucidated by cryo‐TEM, WAX, SAXS, UV/Vis, IR analyses, and single‐crystal X‐ray crystallography. An antiparallel β‐sheet‐type aggregate consisting of an infinite one‐dimensional hydrogen‐bonding network of amide groups and π‐stacking of PdCl(dpb) moieties was observed in the supramolecular gel fiber of L ‐ 2 , even though discrete dimers are assembled through hydrogen bonding in the thermodynamically stable single crystal of L ‐ 2 . The disparate DSC profiles of the single crystal and xerogel of L ‐ 2 indicate different thermodynamics of the molecular assembly process.  相似文献   

15.
The relationships between the chemical structures and hydration environment of the polymers can provide significant insight into the water‐amphiphilic polymer interactions. Here, the hydrophobicity of amphiphilic block copolymers poly(ethylene tartaramide‐b‐alkyl isocyanate) is gradually tuned by using of a series of pendant alkyl (isopropyl, n‐butyl, cyclopentyl, and cyclohexyl) groups. Dynamics of hydration probed by low‐field NMR relaxometry exhibits a heterogeneous environment of water molecules, corresponding to tightly bound water with slow re‐orientational mobility and loosely bound water with fast re‐orientational mobility. Progressively larger amounts of bound water are present in the copolymers, ongoing from pendant isopropyl, n‐butyl, cyclopentyl, and finally to cyclohexyl group. Water in the copolymer bearing the cyclohexyl group has a significantly high partial specific heat capacity. Therefore, hydrophobic interaction between the polymer and water is enhanced when the hydrophobicity of the polymer is increased, resulting in considerable hydrophobic hydration with decreased mobility of the bound water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 138–145  相似文献   

16.
We report herein that the reaction between a series of Hantzsch’s ester analogues 1 a – d with the Lewis acidic species B(C6F5)3 results in facile transfer of hydride to boron. The main products of this reaction are pyridinium borohydride salts 2 a – d , which are obtained in high to moderate yields. The N‐substituted substrates (N‐Me, N‐Ph) reacted in high yield 90–98 % and the connectivity of the products were confirmed by an X‐ray crystallographic analysis of the N‐Me borohydride salt 2 a . Unsubstituted Hanztsch’s ester 1 a reacted less effectively generating only 60 % of the corresponding borohydride salt, with the balance of the material sequestered as the ester‐bound Lewis acid–base adduct 3 a . Formation of the Lewis acid–base adduct could be minimized by increasing the steric bulk about the ester groups as in 1 d . The connectivity of the carbonyl‐bound adduct was confirmed by an X‐ray crystallographic analysis of 3 e the product of the reaction of methyl ketone 1 e with B(C6F5)3. We also explored the generation of these pyridinium salts by employing frustrated Lewis pair methodology. However, the reaction of mixtures of the corresponding pyridine and B(C6F5)3 with hydrogen gas only resulted in formation of trace amounts of the pyridinium borohydride, along with the Lewis acid–base adduct of the starting material and B(C6F5)3. The 1,2‐dihydropyridine adduct was the final product of this reaction. This was ascribed to the low basicity of the pyridine nitrogen and the complicating formation of an ester bound Lewis acid–base adduct.  相似文献   

17.
Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full‐length membrane‐bound P450 and its redox partner cytochrome b5 (cytb5) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane‐bound complex in model membranes renders high‐resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450–cytb5 complex in peptide‐based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450–cytb5 complex in the nanodisc. This is the first successful demonstration of a protein–protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane‐bound protein complexes.  相似文献   

18.
Styrene–butadiene rubber (SBR) is a copolymer of styrene and butadiene, and the butadiene unit is composed of cis‐1,4‐, trans‐1,4‐, and 1,2‐components. Filler‐polymer interactions of each component of SBR in silica‐filled SBR compounds were examined by microstructure analysis of the bound and unbound rubbers. The composition ratio of butadiene and styrene units (butadiene/styrene) of the bound rubber was higher than that of the compounded rubber. Of the butadiene units, the 1,2‐component of the bound rubber was more abundant than the cis‐1,4‐ and trans‐1,4‐components. The filler‐polymer interaction of the butadiene unit with silica was stronger than that of the styrene unit, and the interaction of the 1,2‐component was stronger as compared with the others. The butadiene–styrene ratio of the bound rubber of the compounds containing the silane coupling agent was lower than for the compounds without the silane. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 577–584, 2004  相似文献   

19.
Two biscatecholester ligands with oligoether spacers were used to prepare dinuclear titanium(IV) triscatecholate based helicates. In the case of Li4[( 1 / 2 )3Ti2], “classical” helicates with three internally bound Li+ ions and syn‐oriented ligands in the complex units (fac/fac isomer) were obtained. In the case of the sodium salt Na4[( 2 )3Ti2], a different homochiral dinuclear triple‐stranded helicate with two internally bound Na+ ions was formed. The complex units are anti‐configured, and two of the ligand spacers are connecting internal with external positions of the helicate (mer/mer isomer). Removal of the sodium ions and addition of lithium ions leads to the switching from one topology to the other with an expanded helicate [( 2 )3Ti2]4? as an intermediate. Switching back to the “non‐classical” helicate cannot be observed because severe structural rearrangements would be required.  相似文献   

20.
Escherichia coli 3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation reaction between D-arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) to form KDO8P and inorganic phosphate (Pi). This enzyme exists as a tetramer in solution, which is important for catalysis. Two different states of the enzyme were obtained: i) PEP-bound and ii) PEP-unbound. The effect of the substrates and products on the overall structure of KDO8P synthase in both PEP-bound and unbound states was examined using electrospray ionization mass spectrometry. The analysis of our data showed that the complexes of the PEP-unbound enzyme with PEP (or Pi) favored the formation of monomers, while the complexes with A5P (or KDO8P) mainly favored dimers. The PEP-bound enzyme was found to exist in the monomer and dimer with a small amount of the tetramer, whereas the PEP-unbound form primarily exists in the monomer and dimer, and no tetramer was observed, suggesting that the bound PEP have a role in stabilization of the tetrameric structure. Taken together, the results imply that the addition of the substrates or products to the unbound enzyme may alter the subunit-subunit interactions and/or conformational change of the protein at the active site, and this study also demonstrates that the electrospray ionization mass spectrometric method may be a powerful tool in probing the subunit-subunit interactions and/or conformational change of multi-subunit protein upon binding to ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号