首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The BaGd2?x O4:xDy3+ (0 ≤ x ≤ 0.08) phosphors were synthesized at 1,300 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction, photoluminescence excitation spectra, photoluminescence (PL) spectra, X-ray excited luminescence (XEL) spectra, and thermoluminescence (TL) spectra. It is found that the quenching concentration of Dy3+ ions in BaGd2O4 host is dependent on the selected excitation wavelength. The optimal PL intensity for the investigated BaGd2?x O4:xDy3+ phosphors is found to be x = 0.01, 0.02, and 0.04, upon excitation by 234, 277, and 350 nm ultraviolet light, respectively. The energy transfer among Dy3+ ions upon excitation by 350 nm is confirmed to be an electric dipole–dipole interaction mechanism based on the fitting of Huang’s rule. In addition, the intensive XEL from BaGd2O4:Dy3+ phosphor is observed by the naked eyes at room temperature, and TL properties of the investigated phosphors are analyzed and discussed. All the results imply that the investigated phosphors could be a promising scintillating phosphor.  相似文献   

2.
Five Na2SO4:RE3+ phosphors activated with rare-earth (RE) ions (RE3+=Ce3+, Sm3+, Tb3+, Dy3+ and Tm3+) were synthesized by heating natural thenardite Na2SO4 from Ai-Ding Salt Lake, Xinjiang, China with small amounts of rare-earth fluorides, CeF3, SmF3, TbF3, DyF3 and TmF3, at 920 °C in air. The photoluminescence (PL) and optical excitation spectra of the obtained phosphors were measured at 300 and 10 K. In the PL spectrum of Na2SO4:Ce3+ at 300 K, two overlapping bands with peaks at 335 and 356 nm due to Ce3+ were first observed. Narrow bands observed in PL and excitation spectra of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors were well identified with the electronic transitions within the 4fn (n=5, 8, 9 and 12) configurations of RE3+. The existence of excitation bands with high luminescence efficiency at wavelengths shorter than 230 nm is characteristic of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors. The obtained results suggest that these phosphors are unfavorable as the phosphor for usual fluorescence tubes, i.e., mercury discharge tubes, but may be favorable as the phosphor for UV-LED fluorescent tubes and as cathodoluminescence, X-ray luminescence and thermoluminescence phosphors.  相似文献   

3.
Thermodynamic properties, electronic structures and spectroscopic properties of defects and Ce3+ in Y2O3 are studied by using the hybrid density functional theory associated with multi-reference configuration interaction ab-initio calculations. Thermodynamic transition energy levels of the easily generated oxygen vacancies in the host are analyzed according to HSE06-calculated formation energies, which may be conducive to interpretations of the persistent luminescence (PersL) of Y2O3-based phosphors. Besides, the locations of impurity states (caused by VO and Ce3+) in energy bands are obtained from derived density of states. Moreover, energies and oscillator strengths of 4f1 → 5d1−5 transitions of Ce3+ ions (at Y1 and Y2 sites) calculated from the CASSCF/CASPT2/RASSI−SO method agree reasonably well with experimental excitation spectra of Y2O3: Ce3+ phosphors, achieving the assignment of excitation spectra. The presented calculations can be applied to identify luminescent centers in Ce3+-doped phosphors and reveals possible native defects and their roles in the PersL of phosphors.  相似文献   

4.
Eu2+/Mn2+-doped KCaPO4 phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), SEM, photoluminescence excitation, and emission spectra, and the luminescence decay curves were measured. Mn2+ singly doped KCaPO4 shows the weak origin-red luminescence band peaked at about 590 nm. The Eu2+/Mn2+ co-doped phosphors emit two distinctive luminescence bands: a blue one centered at 480 nm originating from Eu2+ ions and a broad red-emitting one peaked at 590 nm from Mn2+ ions. The luminescence intensity from Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ ions. The efficient energy transfer from Eu2+ to Mn2+ was verified by the photoluminescence spectra together with the luminescence decay curves. The resonance-type energy transfer via a dipole–quadrupole interaction mechanism was supported by the decay lifetimes. The emission colors could be tuned by changing the Mn2+-doping concentration.  相似文献   

5.
ABSTRACT

Cerium-doped yttrium aluminum garnet (YAG: Ce3+) nanopowder phosphors have been elaborated by sol–gel process and annealed at 900°C for 2?h. The prepared phosphors were exposed to gamma radiation, using 60Co source, at different doses ranging from 5 to 100?kGy. The influence of γ-irradiation on the structural, morphological and luminescence properties of YAG: Ce3+ phosphors were investigated in detail by X-ray diffraction, ?eld emission scanning electron microscopy (FESEM), Fourier transforms infrared spectroscopy (FTIR) and photoluminescence measurements. The XRD analysis confirmed the presence of single cubic phase for all samples of YAG: Ce3+ nanophosphors independent of γ-rays dose. FESEM micrograph results revealed that the particles present flate-like shapes and high density of dislocation for sample irradiated at 100?kGy of γ-ray. The YAG: Ce3+ nanophosphors showed broad green–yellow emission band in the range of 450–700?nm with maximum intensity at 538?nm assigned to the 5d → 4f transitions of Ce3+ ion. The emission intensity of YAG: Ce3+ phosphors vary with the γ-ray irradiation and reach the maximum for sample irradiated to a dose of 25?kGy. The variation of luminescence intensity is related to the crystallite size and Ce4+ ions content in YAG host nanomaterial.  相似文献   

6.
The luminescence of excitons and antisite defects (ADs) was investigated, as well as the specific features of the excitation energy transfer from excitons and ADs to the activator (Ce3+ ion) in phosphors based on Lu3Al5O12:Ce (LuAG:Ce) single crystals and single-crystalline films, which are characterized by significantly different concentrations of ADs of the Lu Al 3+ type and vacancy-type defects. The luminescence band with λmax = 249 nm in LuAG:Ce single-crystal films is due to the luminescence of self-trapped excitons (STEs) at regular sites of the garnet lattice. The excited state of STEs is characterized by the presence of two radiative levels with significantly different transition probabilities, which is responsible for the presence of two excitation bands with λmax = 160 and 167 nm and two components (fast and slow) in the decay kinetics of the STE luminescence. In LuAG:Ce single crystals, in contrast to single-crystal films, the radiative relaxation of STEs in the band with λmax = 253.5 nm occurs predominantly near Lu Al 3+ ADs. The intrinsic luminescence of LuAG:Ce single crystals at 300 K in the band with λmax = 325 nm (τ = 540 ns), which is excited in the band with λmax = 175 nm, is due to the radiative recombination of electrons with holes localized near Lu Al 3+ ADs. In LuAG:Ce single crystals, the excitation of the luminescence of Ce3+ ions occurs to a large extent with the participation of ADs. As a result, slow components are present in the luminescence decay of Ce3+ ions in LuAG:Ce single crystals due to both the reabsorption of the UV AD luminescence in the 4f-5d absorption band of Ce3+ ions with λmax = 340 nm and the intermediate localization of charge carriers at ADs and vacancy-type defects. In contrast to single crystals, in phosphors based on LuAG:Ce single-crystal films, the contribution of slow components to the luminescence of Ce3+ ions is significantly smaller due to a low concentration of these types of defects.  相似文献   

7.
Zn2?2x Mn2x GeO4 (x=0, 0.001, 0.01) phosphors were prepared by conventional solid state reaction technique. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflection spectra, photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the synthesized phosphors. The Mn2+-activated Zn2GeO4 phosphors exhibit narrow emission band at 532 nm under the excitation of ultraviolet light, which due to the 4T1(4G)–6A1(6S) transition of Mn2+ ions. Also it is observed that there exists energy transfer between the Zn2GeO4 host lattice and the activator (Mn2+). Under excitation of low-voltage electron beams, Zn2GeO4:Mn2+ shows strong green emission band dominating at 535 nm, corresponding to the 4T1(4G)–6A1(6S) emission of Mn2+ ions. The emission intensity and chromaticity coordinates of Zn2GeO4:Mn2+ as a function of accelerating voltage and the filament current were also investigated.  相似文献   

8.
Strontium aluminate (SrAl4O7) nanophosphor codoped with Tm3+–Yb3+ has been synthesized through the combustion route using urea as the reducing agent. Structural, thermal and optical characterizations have been carried out. Heat treatment of the samples shows a change in the crystallite phases and the relative luminescence intensities for the different bands. The nanocrystalline particles in the as-synthesized sample seem to arrange in rod like shapes of submicrometer length on annealing. A broad (350–550 nm) emission in the UV–green region is observed when 266 nm radiation is used for excitation. Intense upconversion (UC) emissions in blue, red and infrared are seen with excitation by 976 nm radiation. An emission at 364 nm not observed earlier and attributed to 1D23H6 transition in Tm3+ is also seen. The blue emission from SrAl4O7:Tm3+/Yb3+ codoped nanophosphor (annealed at 1200°C) exhibits high color purity (89%) and is comparable to phosphors used commercially. The energy transfer mechanisms, responsible for these UC emissions, are proposed and discussed.  相似文献   

9.
LiPr1−xCexP4O12 (x=0, 0.002, 0.02; 0.1) powder samples were prepared using the melt solution technique. Luminescent parameters of LiPr1−xCexP4O12 phosphors have been investigated under ultraviolet-vacuum ultraviolet (3-12 eV) synchrotron radiation and X-rays excitation at room and near liquid He temperatures. Excitation luminescence spectra of Ce3+ emission, luminescent spectra and decay curves from the lower excited state levels of the 4f15d1 and 5d1 electronic configuration of the Pr3+ and Ce3+, respectively, clearly indicate energy transfer from Pr3+ to Ce3+. Energy migration proceeds via the Pr-sublattice followed by nonradiation transfer from Pr3+ to Ce3+ ions.  相似文献   

10.
In this paper we report the modified solid state synthesis of Ce3+ activated Sr6B5AlO15, Ca6B5AlO15 Ba6B5AlO15 and mixed host aluminoborate phosphors. The prepared phosphors were characterized by photoluminescence technique. The PL excitation spectra showed the excitation peaks ranging from 300 to 400 nm and emission spectra are observed in UV-blue region of spectrum and it varied for different hosts. This kind of emission is due to 4f65d → 4f7 transition of Ce3+ ion. Further PLE and PL emission spectra for various compositions Ca5Sr1B5AlO15, Ca4Sr2B5AlO15, Ca3Sr3B5AlO15, Ca2Sr4B5AlO15, CaSr5B5AlO15 are also taken which shows Ce3+ emission at 428 nm, 425 nm, 432 nm, 427 nm, 438 nm respectively. The calculated 2FJ (J = 7/2, 5/2) energy gap of Ce3+ in all hosts have been calculated and obtained values for Sr6B5AlO15, Ba6B5AlO15 phosphors are 1888 cm−1 and 1330 cm−1 respectively. PL emission spectra of mixed host aluminoborates have shown slight variations in positions of emission peaks.  相似文献   

11.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

12.
The effect of the sintering temperature of Ce3+-doped Lu3Al5O12 (Ce-LuAG) phosphors on the emission and properties of the crystal structure was studied. A cathodoluminescence peak at 317 nm, which was assigned to lattice defects, was exhibited in addition to emission peaks at 508 and 540 nm for the Ce-LuAG phosphors. The intensities of the 317 nm emission peak for the phosphors with mean particle diameters of 5.0 and 10.0 µm formed at a low sintering temperature of 1430 °C were higher than those for the phosphors with mean particle diameters of 18.0 and 20.5 µm formed at a high sintering temperature of 1550 °C. In contrast, the electroluminescence spectra for fabricated white-light-emitting diodes (LEDs) using the phosphors revealed that the intensity of the peak at 540 nm was strong for the mean particle diameters of 18.0 and 20.5 µm. The intensity of the 540 nm peak, which is attributed to the 4f→5d transition of the Ce3+ activator, showed a dependence on the sintering temperature. The relationship between the optical properties and the lattice defects is discussed.  相似文献   

13.
Ce3+ activated aluminate based phosphors prepared by combustion synthesis are reported here. The emission of Ce3+ ion is observed around 321–354 nm in the ultraviolet region of the spectrum. The intensity of strong photoluminescence emission peak of Ce3+ ion increases when Mg is added to CaAl12O19 phosphor. The Ce3+ emission in CaAl12O19:Ce,Mg phosphor may be useful for scintillation application.  相似文献   

14.
红色LiMBO3 : Re3+(Re=Eu,Sm) 发光材料的特性   总被引:2,自引:1,他引:1       下载免费PDF全文
采用固相法制备了红色LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca, Sr, Ba)BO3 : Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca, Sr, Ba)BO3 : Sm3+材料也呈多峰发射,分别对应Sm3+4G5/26H5/24G5/26H7/24G5/26H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca, Sr, Ba)BO3 : Re3+(Re=Eu, Sm)材料的发射强度。  相似文献   

15.
Yb3+-Tm3+ co-doped up-conversion powder phosphors using Zn(AlxGa1-x)2O4 (ZAGO) as the host materials were synthesized via solid-state reaction successfully. In addition, the morphology, structural characterization and up-conversion luminescent properties were all investigated by scanning electron microscope (SEM), x-ray diffraction (XRD) and fluorescence spectrophotometer (F-7000), respectively. Under the excitation of a 980 nm laser, all as-prepared powders can carry out blue emission at about 477 nm (corresponding to 1G4 → 3H6 transition of Tm3+ ions), and red emission at about 691 nm (attributed to 3F3 → 3H6 transition of Tm3+ ions). Also, the influence of doping Al3+ ions were investigated. In brief, the doping of Al3+ ions has no effect on the position of emission peak. Howbeit the up-conversion efficiency and intensity of ZAGO:Yb,Tm phosphors are stronger than ZGO:Yb,Tm and ZAO:Yb,Tm phosphors, while the crystallinity is the opposite. More particularly, all as-prepared powder phosphors emit strong luminescence, which is observable by the naked eye, demonstrating the potential applications in luminous paint, luminescent dye, etc.  相似文献   

16.
The luminescence, reflection, and luminescence excitation spectra of two-component Ca1 ? x Sr x F2:Ce3+ (0.05 mol %) (x = 0.14, 0.25, 0.4, 0.6, and 0.75) have been studied at room temperature and T = 8 K. It is shown that the luminescence bands (upon 130-eV photon excitation) in the range of 200 to 400 nm are attributed to singlet and triplet self-trapped exciton luminescence and to 5d-4f transitions in Ce3+.  相似文献   

17.
Rare earth ions (Ce3+, Eu2+) activated Ca3MgSi2O8 (CMSO) phosphors have been synthesized using solid-state reaction method in 95%N2+5%H2 reduction atmosphere at elevated temperatures by varying Eu2+ concentration from 0.0075 to 0.0300 at the fixed Ce0.03 concentration to study their photoluminescence (PL) properties. An energy transfer occurs from Ce3+ to Eu2+ through a significant overlap of Eu2+ excitation spectrum with Ce3+ emission spectrum in CMSO, together with the systematic relative decrease and increase in emission bands of Ce3+ and Eu2+, respectively, have been observed. To support the phenomenon, diffuse reflectance spectra show various absorption levels corresponding to Ce3+, Eu2+, and/or mixture of both rare earth ions. An optimum emission was realized at 0.0150 of Eu2+ via. energy transfer from Ce3+ ion. By utilizing the principle of energy transfer, the critical distance (R c ) between activator ions was found to be 18.64 Å. The CIE chromaticity coordinates measured on the Ca3MgSi2O8:Ce3+, Eu2+ phosphors excited under ultraviolet (365 nm) source shows the values lie in cool white light region could be applied to solid state lighting.  相似文献   

18.
Novel Eu3+, Ce3+ activated NaBa4(BO3)3 phosphors were synthesized by solid-state reactions. The excitation spectrum of NaBa4(BO3)3:Ce3+ consists of an intense band peaking at 350 nm and a weak band in the higher energy side, and the emission spectrum exhibits a blue band with a maximum at about 420 nm. The Eu3+ emission in NaBa4(BO3)3 consists of the transitions from 5D0 to 7FJ, and the excitation spectrum consists of broad excitation band peaking at 270 nm and some intense narrow lines. The optimum doped concentration, the critical distance of the concentration quenching, and the fluorescence lifetime have also been investigated.  相似文献   

19.
Spectroscopic properties of Ce3+ and Pr3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu) have been investigated using VUV spectroscopy technique. Ce3+-doped samples show typical Ce3+ emission in the range of 325-450 nm. The strong host absorption band starting at around 160 nm indicates that the optical band gap of AREP2O7 hosts is at least 7.7 eV, and the host→Ce3+ energy transfer process is rather efficient. However, AREP2O7:Pr3+ samples show less efficient host→Pr3+ energy transfer. The direct Pr3+ 4f2→4f15d1 excitation, which are 12160±640 cm−1 higher respect to that of Ce3+, leads to strong 4f15d1→4f2 emission bands in the range of 230-325 nm but no obvious 4f2→4f2 emission lines.  相似文献   

20.
《Current Applied Physics》2020,20(5):696-702
Ca3(PO4)2:1mol%Ce3+/xGd3+ (where x = 0.5, 1.0, 3.0 and 5.0 mol%) phosphors were synthesized by the conventional combustion synthesis method. The X-ray diffraction patterns showed their rhombohedral structure with space group of R3c. The optical properties including reflectance, excitation and emission were investigated. The band gaps of the phosphors were calculated from diffuse reflectance spectra data using the Kubelka–Munk function. The photoluminescence (PL) excitation spectra exhibited the broadband 4f–5d transition of Ce3+ ions centered at ~265 nm. The PL emission properties of the Ca3(PO4)2:Ce3+/Gd3+ phosphors were studied as a function of the Gd3+ ion concentration. The Ca3(PO4)2:Ce3+/Gd3+ phosphor had a wide emission band ranging from 320 to 400 nm, and peaking at 365 nm. This emission is ascribed to the transition from the higher 5d band to 2F7/2, 2F5/2 states of the Ce3+ ion. The 365 nm peak shifted to longer wavelengths with increasing concentration of the Gd3+ ion. The CIE chromaticity diagram of Ca3(PO4)2:Ce3+/Gd3+ phosphor showed tunable emission colour from violet to violet-blue, suggesting that this phosphor can act as a source of violet-blue colour for application in information displays, phototherapy and photoluminescent liquid crystal displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号