首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
Comparative studies of the luminescence of Y3Al5O12:Ce and Lu3Al5O12:Ce single-crystal films and their volume analogues—Y3Al5O12 and Y3Al5O12:Ce single crystals, excited by synchrotron radiation with energy E=120–150 eV, have been performed. The films were grown from melt-solution by liquid-phase epitaxy and the crystals were grown from melt. The single-crystal films and single crystals studied are characterized by different degrees of structural order, in particular, different concentrations of substitutional defects of the Y Al 3+ and LU Al 3+ types. It was ascertained that the bands at 260 and 250 nm in the intrinsic luminescence spectra of Y3Al5O12:Ce and Lu3Al5O12:Ce single-crystal films and single crystals are due to the emission of self-trapped excitons. The luminescence band with λmax=300 nm and τ=0.36 μs, which is present in the luminescence spectrum of single crystals and absent in the spectra of single-crystal films, is due to the recombination of electrons with holes localized at Y Al 3+ centers. It is shown that an efficient energy transfer by excitons to activator ions occurs in Y3Al5O12 and Lu3Al5O2 single-crystal films doped with Ce3+ ions.  相似文献   

2.
The nature of the intrinsic luminescence of the lutetium aluminum garnet Lu3Al5O12 (LuAG) has been analyzed on the basis of time-resolved spectral kinetic investigations upon excitation of two model objects, LuAG single crystals and single-crystal films, by pulsed X-ray and synchrotron radiations. Due to the differences in the mechanisms and methods of crystallization, these objects are characterized by significantly different concentrations of LuAl antisite defects. The energy structure of luminescence centers in LuAG single crystals (self-trapped excitons (STEs), excitons localized near antisite defects, and LuAl antisite defects) has been established. For single-crystal LuAG films, grown by liquid-phase epitaxy from a Pb-containing flux, the energy parameters of the following luminescence centers have been determined: STEs in regular (unperturbed by the presence of antisite defects) sites of the garnet lattice and excitons localized near Pb2+ ions. The structure of the luminescence centers, related to the background emission of impurity Pb2+ ions, has also been established in the UV and visible ranges. It is suggested that, in contrast to the two-halide hole self-trapping, a self-trapped state similar to STEs in simple oxides (Al2O3, Y2O3) is formed in LuAG; this state is formed by self-trapped holes in the form of singly charged O? ions and electrons localized at excited levels of Lu3+ cations.  相似文献   

3.
The time-resolved luminescence and luminescence excitation spectra, and luminescence decay kinetics at 8 and 300 K of Lu3A15O12 (LuAG) single-crystal films doped with Sc3+ and La3+ isoelectronic impurities and excited by synchrotron radiation are investigated. It is established that the La3+ isoelectronic impurity in the ?ub;c?ub; positions of the garnet lattice forms La Lu 3+ luminescence centers emitting in the band with λmax = 280 nm and the decay time of the main component τ = 300 ns at 300 K. The Sc3+ isoelectronic impurity located in the ?ub;c?ub; and (a) positions of the LuAG lattice forms two luminescence centers, Sc Lu 3+ and Sc Al 3+ , emitting in the bands with λmax = 290 nm and τ = 240 ns and λmax = 335 nm and τ = 375 ns, respectively, at 300 K. It is shown that the luminescence excitation of the La3+ and Sc3+ isoelectronic impurities in LuAG single-crystal films occurs through radiative decay of excitons localized near La Lu 3+ , Sc Lu 3+ , and Sc Al 3+ centers. The energies of formation of these excitons are determined to be 6.8, 6.88, and 7.3 eV, respectively. It was found that the excited state of the excitons genetically related to the La Lu 3+ , Sc Lu 3+ , and Sc Al 3+ enters has two radiative levels with different transition probabilities. This configuration leads to the presence of fast (2.3–8.4 ns) and slow (150–375 ns) main components in the luminescence of the centers formed by isoelectronic impurities in garnets.  相似文献   

4.
The luminescence spectra of single-crystal films and bulk crystals of yttrium-aluminum garnet Y3Al5O12 and Ce3+-activated Y3Al5O12 were investigated. It was shown that the room-temperature luminescence intensity of the Ce3+-free single-crystal Y3Al5O12 film was considerably lower than that of the bulk crystals, while the luminescence intensity of the Ce3+ ions in the Y3Al5O12:Ce films was considerably higher than that one for the corresponding bulk crystal.  相似文献   

5.
Optical characteristics of BaF2 and BaF2: Ce single crystals and nanoceramic materials prepared from these single crystals by uniaxial hot pressing have been studied. It has been shown that the introduction of Ce3+ ions into BaF2 hardly affects the ultrafast (∼0.9 ns) luminescence component. The integrated luminescence intensity of the BaF2: Ce nanoceramics is higher than that of the corresponding single crystal and considerably higher that the intensity of the undoped BaF2 crystal. It has been demonstrated that the slow (several hundred nanoseconds) component of the luminescence decay of BaF2: Ce is due to the energy transfer from excitons to Ce3+ ions.  相似文献   

6.
The paper reports on a study of exciton luminescence in single crystals (SCs) and single-crystal films (SCFs) of YAlO3, which have substantially different concentrations of vacancy-type and substitutional defects, under excitation by synchrotron radiation near the fundamental absorption edge. The radiative annihilation of excitons in SCFs was shown to occur primarily at regular perovskite lattice sites and to be accompanied by luminescence in a band peaking at λmax = 295 nm with τ = 5.2 ns. In contrast to SCFs, the radiative exciton decay in YAlO3 SCs takes place predominantly near vacancy-type defects (F+ and F centers) and is accompanied by luminescence in the bands at λmax = 350 nm (τ = 2.5 ns) and 440 nm (τ1 = 1.9 ns, τ2 = 30 ms). Photoexcitation in the 175-nm band of YAlO3 SCs revealed photoconversion of the centers FF+.  相似文献   

7.
8.
Luminescence and scintillation properties of Y3Al5O12:Ce single crystals grown from the melt by the Czochralski and horizontal directed crystallization methods in various gas media and Y3Al5O12:Ce single-crystal films grown by liquid-phase epitaxy from a melt solution based on a PbO-B2O3 flux have been comparatively analyzed. The strong dependence of scintillation properties of Y3Al5O12:Ce single crystals on their growth conditions and concentrations of YAl antisite defects and vacancy defects has been established. Vacancy defects are involved in Ce3+ ion emission excitation as the centers of intrinsic UV luminescence and trapping centers. It has been shown that Y3Al5O12:Ce single-crystal films are characterized by faster scintillation decay kinetics than single crystals and a lower content of slow components in Ce3+ ion luminescence decay during high-energy excitation due to the absence of YAl antisite defects in them and low concentration of vacancy defects. At the same time, the light yield of Y3Al5O12:Ce single-crystal films is comparable to that of single crystals grown by directed crystallization due to the quenching effect of the Pb2+ ion impurity as a flux component and is slightly lower (∼25%) than the light yield of single crystals grown by the Czochralski method.  相似文献   

9.
The processes of excitation energy transfer in phosphors based on single-crystal Tb3Al5O12:Ce (TbAG:Ce) and Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet films have been investigated. These films are considered to be promising materials for screens for X-ray images and luminescence converters of blue LED radiation. The conditions for excitation energy transfer from the matrix (Tb3+ cations) to Ce3+ and Eu3+ ions in TbAG:Ce and TbAG:Ce,Eu phosphors have been analyzed in detail. It is established that a cascade process of excitation energy transfer from Tb3+ ions to Ce3+ and Eu3+ ions and from Ce3+ ions to Eu3+ ions is implemented in TbAG:Ce,Eu via dipole-dipole interaction and through the Tb3+ cation sublattice.  相似文献   

10.
The short-wave transmission spectrum of Na0.4Lu0.6F2.2 with the visible/ultraviolet transmission edge of 8 eV was studied. Absorption spectra of the 4f—5d transitions of the Ce3+ ion in the region of 4–8 eV were studied in Ce3+-doped Na0.4Lu0.6F2.2 single crystals. Luminescence spectra in the ultraviolet and visible spectral regions, luminescence decay kinetics and reflection and luminescence excitation spectra in the visible/ultraviolet and ultraviolet regions (4–20 eV) were investigated at helium and room temperatures.  相似文献   

11.
This paper reports on a study of the luminescence emitted by Li6Gd(BO3)3: Ce3+ crystals under selective photoexcitation to lower excited states of the host ion Gd3+ and impurity ion Ce3+ within the 100–500-K temperature interval, where the mechanisms of migration and relaxation of electronic excitation energy have been shown to undergo noticeable changes. The monotonic 10–15-fold increase in intensity of the luminescence band at 3.97 eV has been explained within a model describing two competing processes, namely, migration of electronic excitation energy over chains of Gd3+ ions and vibrational energy relaxation between the 6 I j and 6 P j levels. It has been shown that radiative transitions in Ce3+ ions from the lower excited state 5d 1 to 2 F 5/2 and 2 F 7/2 levels of the ground state produce two photoluminescence bands, at 2.08 and 2.38 eV (Ce1 center) and 2.88 and 3.13 eV (Ce2 center). Possible models of the Ce1 and Ce2 luminescence centers have been discussed.  相似文献   

12.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

13.
Optical properties of Ho3+-doped Lu3Al5O12 and (Lu,Y)3Al5O12 crystals were investigated and compared. Substitution of Y for Lu in the host garnet Lu3Al5O12 results in broad absorption and emission spectra, and improvements in the laser behavior of Ho3+. Pumped by Tm:fiber laser, a maximum output power of 5.02 and 5.73 W of Ho-doped Lu3Al5O12 and (Lu,Y)3Al5O12 have been obtained, respectively. The center lasing wavelength are 2124.5 and 2123.0 nm for Lu3Al5O12 and (Lu,Y)3Al5O12, respectively.  相似文献   

14.
A time-resolved cathodo-and photoluminescence study of nanostructural modifications of Al2O3 (powders and ceramics) excited by heavy-current electron beams, as well as by pulsed synchrotron radiation, is reported. It was found that Al2O3 nanopowders probed before and after Fe+ ion irradiation have the same phase composition (the γ-phase/δ-phase ratio is equal to 1), an average grain size equal to ~17 nm, and practically the same set of broad cathodoluminescence (CL) bands peaking at 2.4, 3.2, and 3.8 eV. It was established that Al2O3 nanopowders exhibit fast photoluminescence (PL) (a band at 3.2 eV), whose decay kinetics is described by two exponential stages (τ1 = 0.5 ns, τ2 = 5.5 ns). Three bands, at 5.24, 6.13, and 7.44 eV, were isolated in the excitation spectrum of the fast PL. Two alternate models of PL centers were considered, according to which the 3.2-eV luminescence either originates from radiative relaxation of the P? centers (anion-cation vacancy pairs) or is due to the formation of surface analogs of the F+ center (F S + -type centers). In addition to the fast luminescence, nano-Al2O3 was found to produce slow luminescence in the form of a broad band peaking at 3.5 eV. The excitation spectrum of the 3.5-eV luminescence obtained at T = 13 K exhibits two doublet bands with maxima at 7.8 and 8.3 eV. An analysis of the luminescent properties of nanostructural and single-crystal Al2O3 suggests that the slow luminescence of nanopowders at 3.5 eV is due to radiative annihilation of excitons localized near structural defects.  相似文献   

15.
Radioluminescence and thermally stimulated luminescence measurements on Lu2O3, Lu2SiO5 (LSO) and Lu2SiO5:Ce3+ (LSO:Ce) reveal the presence of intrinsic ultraviolet luminescence bands. Characteristic emission with maximum at 256 nm occurs in each specimen and is attributed to radiative recombination of self-trapped excitons. Thermal quenching of this band obeys the Mott-Seitz relation yielding quenching energies 24, 38 and 13 meV for Lu2O3, LSO and LSO:Ce, respectively. A second intrinsic band appears at 315 nm in LSO and LSO:Ce, and at 368 nm in Lu2O3. Quenching curves for these bands show an initial increase in peak intensity followed by a decrease. Similarity in spectral peak position and quenching behavior indicate that this band has a common origin in each of the samples and is attributed to radiative recombination of self-trapped holes, in agreement with previous work on similar specimens. Comparison of glow curves and emission spectra show that the lowest temperature glow peaks in each specimen are associated with thermal decay of self-trapped excitons and self-trapped holes. Interplay between the intrinsic defects and extrinsic Ce3+ emission in LSO:Ce is strongly indicated.  相似文献   

16.
At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce3+-doped Lu3Al5O12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb2+-based centres were identified. The processes of energy transfer from the host lattice to Pb2+ and Ce3+ ions and from Pb2+ to Ce3+ ions were investigated. Competition between Pb2+ and Ce3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb2+ centres with the 3.6 eV absorption band of Ce3+ centres, an effective nonradiative energy transfer from Pb2+ ions to Ce3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce3+ centres and decrease of the Ce3+-related luminescence intensity.  相似文献   

17.
AMn3V4O12 (A = Ca, Ce, and Sm) compounds with a perovskite structure are synthesized at high pressures and temperatures. The crystalline structure of these compounds (space group \(Im\bar 3\)Z = 2) is determined via X-ray analysis. If ions in the A sublattice are changed in the order Ca2+–Sm3+–Ce3+, the valence is redistributed from Ca2+Mn32+V44+O12 to Sm3+Mn32+V43.75+O12, and to Ce3+Mn32+V43.75+O12. The temperature dependences of the electrical resistivity are studied.  相似文献   

18.
We present the results of studying the luminescence properties of transparent ceramics Y3Al5O12:Yb obtained by the vacuum sintering and nanocrystalline technology. In the course of research, we measured the luminescence and luminescence excitation spectra, as well as the temperature and kinetic behavior of luminescence. Our results are analyzed in comparison with the characteristics of corresponding single crystals. We revealed that processes of generation and relaxation of electronic excitations that occur in ceramics, in particular, in the charge transfer state, are similar to processes occurring in crystals. The behavior of two charge-transfer luminescence bands at 340 and 490 nm is studied. In the range 300–600 nm, we revealed a broad emission band of radiation of other type, which is also observed in spectra of undoped ceramics. This broad band is attributed to F+ centers. Emission and excitation spectra of charge transfer luminescence at a maximum of the temperature dependence of 100 K are measured for the first time. We found that, upon excitation in the charge transfer band, luminescence in ceramics is more intense than in single crystals with similar concentrations of Yb and has a higher quenching temperature.  相似文献   

19.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

20.
The optimum ratio of the numbers of the Y3+ and Lu3+ ions in LiF-LuF3-YF3 solid solutions at which the distribution (introduction) coefficient of Ce3+ ions is three to five times larger than that in LiYF4 and LiLuF4 crystals has been determined by the EPR and optical spectroscopy methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号