首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
Two-dimensional-arrayed 14×14 sandwich-type junctions of Au–Pr1−xCaxMnO3−y (PCMO, x=0.5)–SrRuO3 were fabricated on SrTiO3 (0 0 1) substrates. The resistivity–voltage (ρ–V) characteristics of each junction was measured by a two-probe method. The junctions that return to the insulating state after removing the voltage (recoverable) and the ones that remain metallic (unrecoverable) were found to co-exist in one PCMO film. The variation in the lattice constant of the PCMO film, rather than the variation of the composition, is thought to be related to the separation of recoverable–unrecoverable domains. Among several samples with a PCMO layer fabricated under various conditions, the junctions with thin PCMO layers deposited at low temperature showed a pronounced hysteresis in their ρ–V characteristics. The clear hysteresis and good crystallinity of PCMO films were correlated.  相似文献   

2.
A series of samples Pr0.6−xSr0.4MnO3 (x=0, 0.01, 0.05, 0.1, 0.15, 0.2) were synthesized by a solid state reaction method. Pr deficiency at the A site has a great effect on the properties of Pr0.6−xSr0.4MnO3 as the cathode of SOFCs (solid oxide fuel cells). Compared to the commonly used La0.6Sr0.4MnO3 and La0.55Sr0.4MnO3 cathode, Pr0.6−xSr0.4MnO3 is better in the properties of conductivity, overpotential and impedance. In all the samples, the one with x=0.05, Pr0.55Sr0.4MnO3, revealed the best performance in the measured temperature range.  相似文献   

3.
Oxygen plasma-assisted molecular beam epitaxial (MBE) growth of Pr1−xSrxMnO3 (PSMO) thin films has been carried out on NdGaO3(1 1 0) (NGO) substrates. The growth parameters have been optimized to realize 2D layer-by-layer growth. XRD results of the epilayers show that the PSMO/NGO(1 1 0) thin films are of high crystal quality, as clear diffraction peaks can be observed belonging to the film and the substrate, respectively. Based on analysis of the peaks, it was concluded that epitaxial relation is PSMO(1 1 0)//NGO(1 1 0), i.e., the c-axis being parallel to the surface. Both single scans (ω scan, 2θ/ω scan) and 2-axis reciprocal space mapping (RSM) were performed in an effort to assess the crystal structure, crystalline quality, surface and interface properties of the epitaxial layers. High temperature annealing effects on lattice structure and crystal quality have been studied and discussed. Transport property measurement of the PSMO thin film samples has been carried out and main features discussed.  相似文献   

4.
The chemical diffusivity of ‘undoped' polycrystalline BaTiO3−δ was determined via a conductivity relaxation technique, at elevated temperatures (800≤T/°C≤1100) as a function of the ambient oxygen partial pressure in the range of 10−16PO2/atm≤1 including an n- to p-type transition regime. Mathematical formulation was developed to convert conductivity relaxation to the corresponding nonstoichiometry (δ) relaxation in the transition regime. It has been found that the chemical diffusivity appears to exhibit a maximum at the n-to-p transition point where the electronic minimum conductivity falls, and that surface reaction becomes more rate-determining than diffusion as the transition point is approached from both n-type and p-type branches. Experimental details are given and the results are exhaustively compared with those reported up to date on the ‘undoped' BaTiO3.  相似文献   

5.
Polycrystalline perovskite La0.67Ca0.33MnO3 was synthesized by a sol–gel method. Its adiabatic temperature change ΔTad induced by a magnetic field change was measured directly. At 268 K, near its Curie temperature TC, ΔTad of La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T reaches 2.4 K. The latent heat Q and magnetic entropy change −ΔSM induced by a magnetic field change were calculated from the temperature dependence of ΔTad and zero-field heat capacity Cp. The maximum values of Q and −ΔSM in La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T are 1.85 J g−1 and 6.9 J kg−1 K−1, respectively. The former is larger than the phase transition latent heat of heating or cooling, which is about 1.70 J g−1.  相似文献   

6.
The thickness dependence of microstructures of La0.9Sr0.1MnO3 (LSMO) thin films grown on exact-cut and miscut SrTiO3 (STO) substrates, respectively, was investigated by high-angle X-ray diffraction (HXRD), X-ray small-angle reflection (XSAR), X-ray reciprocal space mapping and atomic force microscopy (AFM). Results show that the LSMO films are in pseudocubic structure and are highly epitaxial [0 0 1]-oriented growth on the (0 0 1) STO substrates. The crystalline quality of the LSMO film is improved with thickness. The epitaxial relationship between the LSMO films and the STO substrates is [0 0 1]LSMO[0 0 1]EXACT-STO, and the LSMO films have a slight mosaic structure along the qx direction for the samples grown on the exact-cut STO substrates. However, an oriented angle of about 0.24° exists between [0 0 1]LSMO and [0 0 1]MISCUT-STO, and the LSMO films have a mosaic structure along the qz direction for that grown on the miscut STO substrates. The mosaic structure of both groups of the samples tends to reduce with thickness. The diffraction intensity of the (0 0 4) peaks increases with thickness of the LSMO film. The XSAR and AFM observations show that for both groups, the interface is sharp and the surface is rather smooth. The mechanism was discussed briefly.  相似文献   

7.
The resistive transitions of ultrathin YBa2Cu3O7−δ (YBCO) films with thicknesses 75 and 200 Å were studied under magnetic fields. For the 75 Å film under a 5 T parallel magnetic field (Hbab-plane), no broadening of the resistive transition occurred. In the perpendicular magnetic field (H ab-plane), the broadening of the resistive transition of the 75 Å film is larger than that of the 200 Å thick film. The flux activation energy U was found to be linearly dependent on the temperature and logarithmically dependent on the magnetic field for both 75 and 200 Å films, which means the two samples have a two-dimensional vortex lattice. Furthermore, the activation energy U also increased with the film thickness, indicating that the magnetic correlation length in the c-axis direction lc is larger than the 200 Å for bulk YBCO.  相似文献   

8.
The perovskite p–n heterojunctions were fabricated by depositing La0.9Sr0.1MnO3 (LSMO) layers with thicknesses ranging from 20 to 400 Å on SrNb0.01Ti0.99O3 (SNTO) single-crystal substrates by laser molecular beam epitaxy (laser-MBE). The open-circuit photovoltage of the LSMO/SNTO heterojunction at room temperature increases with the increase of the thickness of LSMO layer. This result is ascribed to the increase of the carrier amount and the enhancement of the built-in electric field in the space-charge region of the LSMO/SNTO heterojunction with the increase of the thickness of LSMO layer. Furthermore, we found that the speed of photovoltaic response is almost independent of the thickness of LSMO layer in the heterojunction.  相似文献   

9.
The temperature dependence of the electrical resistivity of amorphous Co80−xErxB20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum Tmin. In addition, the resistivity shows quadratic temperature behavior in the interval Tmin<T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity shows a change in structural short range occurring in the composition range 8–9 at%.  相似文献   

10.
Ti substituted BiFe1−xTixO3+δ films have been prepared on indium–tin oxide (ITO)/glass substrates by the sol–gel process. The films with x=0.00–0.20 were prepared at an annealing temperature of 600 °C. X-ray diffraction patterns indicate that all films adopt R3m structure and the films with x=0 and 0.10 show pure perovskite phase. Cross-section scanning shows the thickness of the films is about 300 nm. Through 0.05 Ti substitution, the 2Pr increases to 8.30 μC/cm2 from 2.12 μC/cm2 of the un-substituted BiFeO3 film and show enhanced ferroelectricity at room temperature. The 2Pr values are 2.63 and 0.44 μC/cm2 for the films with x=0.01 and 0.2, respectively. Moreover, the films with x=0.05 and 0.10 show enhanced dielectric property since the permittivity increases near 150 at the same measuring frequency. Through the substitution of Ti, the leakage conduction is reduced for the films with x=0.05–0.20.  相似文献   

11.
Recently, we succeeded in fabricating single crystals of PrBa2Cu3O7−δ by a modified top seeded crystal pulling method called the SRL-CP (Solute Rich Liquid-Crystal Pulling) method. Y2O3 and MgO polycrystalline crucibles and a MgO single crystal crucible were used to grow the single crystals. The crystal growth temperature was set in the range of 968°C to 972°C. The grown crystals were identified as PrBa2Cu3O7−δ by X-ray diffraction. In the case of using Y2O3 crucibles the composition of the grown crystals was YxPr1−xBa2Cu3O7−δ (0.48 < x < 0.57) and in the case of using MgO crucibles a relatively small amount of Mg contamination to the grown crystals occurred at a typical concentration of approximately 1 at.% of the sum of cations. According to the crystal growth model of the SRL-CP method [1–5], a maximum growth rate of 1.7 × 10−5 cm/s was calculated with the aid of the phase diagram studies we reported earlier [6]. This value is reasonably in agreement with the experimental results.  相似文献   

12.
The production rate for η′ in ppppη′ at rest is calculated in a covariant one boson exchange model, previously applied to study π0 and η production in NN collisions. The transition amplitudes for the elementary BN → η′N processes with B being the meson exchanged (B = π, σ, η, , ω and a0) are taken to be the sum of s- and u-channels with a nucleon in the intermediate states, and an a0 meson pole in a t-channel. The couplings of the η′ to hadrons are a factor 0.4 weaker than the respective η-hadron couplings, as suggested by a quark model and a singlet-octet mixing angle θ = −23°. The model reproduces near threshold cross sections for the quasielastic processes πpnη(η′) and ppppη(η′) reactions.  相似文献   

13.
Enhancements of the low-field (LFMR) and high-field magnetoresistance (HFMR) were observed in the manganite system prepared by doping Nb2O5 into La0.67Sr0.33MnO3 powders. The maximum MR ratios at 77 K with H=1 T and 1 kOe are 30% and 20% for the 0.07 molar ratio doped sample, which are 1.7 times and 1.6 times as large as that for LSMO, respectively. An MR effect up to 6.5% was also found for the sample with x=0.03 at room temperature (RT). The spin-dependent tunneling and scattering at the interfaces of grain boundaries are responsible for the LFMR while the HFMR originates from a noncollinear spin structure in the surface layer. With increasing x, the Curie temperature (TC) decreases monotonically from 364 to 154 K while the temperature TP related to the peak resistivity decreases firstly to a minimum of 204 K (x=0.06) and then rises up to 240 K (x=0.1). There is a maximum resistivity ρ for the sample with x=0.06, which is higher than that for LSMO by five orders of magnitude. It is due to the enhancement of spin-dependent and independent scattering and tunneling effects on the interfaces of grain boundaries and inside the grains.  相似文献   

14.
Cation deficient spinels NixMn3−x3δ/4O4+δ (0≤x≤1) have been prepared by thermal decomposition of mixed oxalates Nix/3Mn(3−x)/3(C2O4nH2O in air at 623 K. They have been characterised by temperature programmed reduction (TPR) under H2, the reaction being followed by gravimetric and powder X-ray diffraction measurements. It has been shown that TPR proceeds in several steps. The first steps correspond to the loss of nonstoichiometric oxygen leading to the formation of a stoichiometric oxide. During the following stages the manganese cations are reduced, causing the spinel structure to be destroyed, and the formation of solid solution of NiO in a cubic MnO. Subsequently, Ni2+ cations undergo a reduction to metallic nickel, and, finally, a mixture of nonstoichiometric MnO1−δ and metallic nickel is formed. These oxides contain a high level of vacancies which vary with the nickel content with a maximum of δ≈1 near x=0.6. This nonstoichiometry is ascribed both to the presence of Ni3+ and excess of Mn4+.  相似文献   

15.
This study was conducted to investigate the ultraweak delayed radiochemiluminescence (RCL) spectra, kinetics and spectroscopic properties of humic acids (HAs) after γ-radiation exposure (absorbed doses of 1−10 kGy, Co-60) in model systems.

The kinetics and spectral distribution of RCL (340–650 nm) were measured using the single photon counting (SPC) method and cut-off filters.

The intensity of fluorescence (λex=390, 440, 490 and 540 nm) covering the spectral range 400–580 nm was heavily dependent on the λex and slightly increased with the absorbed dose of γ-radiation.

Absorption spectra (the range 240−800 nm) and color coefficients E2.6/4 and E4/6 of irradiated solutions indicated that post-radiative degradation/polymerization processes take place in the HA, changing their macromolecule size or properties.

Comparison of FTIR spectra and elemental analysis proved an increased O and decreased C atoms in irradiated samples. The data indicate on the radiolysis-induced degradation of native HA into fulvic-like acids with higher hydrophilicity and lower molecular size.  相似文献   


16.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

17.
A series of avalanche-like jumps are observed in the mixed state of single crystal YBa2Cu3O7−δ (YBCO) superconductors. Emerging as a saw-tooth pattern in torque vs. sample orientation in magnetic field, these jumps are discontinuous on our most resolute angular scale. While reminiscent of the classical flux jump instability, the present jumps are instead proposed to be associated with the layered nature of the material and twin boundary (TB) pinning, the combination of which promotes a crossover from a tilted to a kinked vortex structure.  相似文献   

18.
YBa2Cu3O7−δ (YBCO) films with high critical current density (Jc) were successfully fabricated on nickel tapes buffered with epitaxial NiO. NiO was prepared on the textured nickel tape by the surface-oxidation epitaxy (SOE) method. We have reported so far a critical temperature (Tc) of 87 K and Jc=4–6×104 A/cm2 (77 K, 0 T) for the YBCO films on NiO/Ni tapes. To enhance the superconducting properties of the YBCO films on the SOE-grown NiO, depositions of thin oxide cap layers such as YSZ, CeO2, and MgO on NiO were investigated. These oxide cap layers were epitaxially grown on NiO and provided the template for the epitaxial growth of YBCO films. Substantially improved data of Tc=88 K and Jc=3×105 A/cm2 (77 K, 0 T) and 1×104 A/cm2 (77 K, Hc, 4 T) were obtained for YBCO film on NiO, by using a MgO cap layer with a thickness of 50 nm. The method described in this paper is a simple way to produce long YBCO tape conductors with high-Jc values.  相似文献   

19.
Nd1.85Ce0.15CuO4−δ superconducting thin films were prepared on (1 0 0) SrTiO3 substrates by pulsed electron deposition technique without reducing atmosphere. Oxygen content is finely controlled by high temperature vacuum annealing, and optimal superconductivity has been obtained. The deposition conditions of the film are discussed in details. Higher deposition temperature and lower gas pressure result in the loss of copper and the appearance of the foreign phase Ce0.5Nd0.5O1.75. High quality Nd1.85Ce0.15CuO4−δ epitaxial films are deposited at 840–870 °C in the mixed gas with a ratio of O2:Ar = 1:3.  相似文献   

20.
Transport properties of SrCe0.95Y0.05O3−δ were studied by impedance spectroscopy and by measuring open-cell voltage (OCV) and gas permeation. Ionic transference numbers were determined by measuring the OCV of concentration cells and water vapor evolution of an O2/H2 fuel cell. We observed interfacial polarization on the basis of the IV curves obtained by discharging a hydrogen concentration cell or an O2/H2 fuel cell. The observed high protonic conductivity (high proton and low oxide ion transference numbers) makes SrCe0.95Y0.05O3−δ a potential material for hydrogen separation. From proton conductivity measurements, under a given hydrogen partial pressure difference of 4%/0.488%, the hydrogen permeation rate (of a dense membrane with 0.11 cm in thickness) was calculated to be ≈0.072 cm3 (STP) cm−2 min−1 at 800°C, whereas the permeation rate calculated from short-circuit current measurements was ≈0.023 cm3 (STP) cm−2 min−1 at 800°C. The difference between calculated and observed permeation rates is probably due to interfacial polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号