首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct high-performance liquid chromatographic separation of three pairs of structurally related enantiomers on derivatized cellulose and amylose chiral stationary phases (Chiralcel OD, Chiralpak AD and Chiralpak AS) was studied using hexane as the mobile phase with 2-propanol or ethanol as modifiers. The separation, retention and elution order of the enantiomers on the different columns using different alcohol modifiers were compared. The effect of structural variation of the solutes on their k' was noted. A reversal of elution order of one enantiomeric pair upon changing the mobile-phase modifier was observed. Chiralcel OD and Chiralpak AD columns provided different elution orders of the enantiomers, including a fourth pair of enantiomers that were not structurally related to the other three pairs.  相似文献   

2.
The enantioseparation of four phthalimide derivatives (thalidomide, pomalidomide, lenalidomide and apremilast) was investigated on five different polysaccharide-type stationary phases (Chiralpak AD, Chiralpak AS, Lux Amylose-2, Chiralcel OD and Chiralcel OJ-H) using neat methanol (MeOH), ethanol (EtOH), 1-propanol (PROP), 2-propanol (IPA) and acetonitrile (ACN) as polar organic mobile phases and also in combination. Along with the separation capacity of the applied systems, our study also focuses on the elution sequences, the effect of mobile phase mixtures and the hysteresis of retention and selectivity. Although on several cases extremely high resolutions (Rs > 10) were observed for certain compounds, among the tested conditions only Chiralcel OJ-H column with MeOH was successful for baseline-separation of all investigated drugs. Chiral selector- and mobile-phase-dependent reversals of elution order were observed. Reversal of elution order and hysteresis of retention and enantioselectivity were further investigated using different eluent mixtures on Chiralpak AD, Chiralcel OD and Lux Amylose-2 column. In an IPA/MeOH mixture, enantiomer elution-order reversal was observed depending on the eluent composition. Furthermore, in eluent mixtures, enantioselectivity depends on the direction from which the composition of the eluent is approached, regardless of the eluent pair used on amylose-based columns. Using a mixture of polar alcohols not only the selectivities but the enantiomer elution order can also be fine-tuned on Chiralpak AD column, which opens up the possibility of a new type of chiral screening strategy.  相似文献   

3.
崔欣  付芳敏  朱槿  迟永祥  彭小华  廖建  邓金根 《分析化学》2002,30(12):1494-1496
考察了奥美拉唑、兰索拉唑对映体及其拆分剂联二萘酚在4种手性柱(chiralcel OD、chiralpak AD、kromasil CHI-TBB和chiral-AGP)上的色谱行为。实验结果表明:Chiralpak AD、 Chiral-AGP柱分离度大,柱效稳定,并且这两种柱子的配合使用实现了对包结拆分的全过程监控。此外,本文根据对映体在不同手性柱的出峰顺序进行了讨论。  相似文献   

4.
M. Yarim  S. Sarac 《Chromatographia》2002,56(5-6):307-312
Summary Analytical HPLC methods using derivatized cellulose chiral stationary phases have been developed for separation of the enantiomers of 25 racemic 4-aryl-7,7-dimethyl- or 1,77-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-diones, condensed derivatives of dihydropyrimidines. The enantiomers of the compounds were resolved by normal-phase chromatography on silica-based cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD) and amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD) columns with mobile phases consisting of mixtures ofn-hexane and an alcohol (2-propanol, ethanol, or methanol) in different proportions. The mobile phase and the chiral stationary phase were varied to achieve the best resolution. The effect of the concentration of alcohol in the mobile phase was studied. The resolution obtained on the two columns was complementary.  相似文献   

5.
The polysaccharide chiral stationary phases (CSPs) Chiralcel OD and Chiralpak AD, and the brush-type (R,R)-Whelk-01 chiral stationary phases have been evaluated to separate new synthetic pyrrolylphenylethanoneamine racemic compounds, potentially monoamine oxidase (MAO) inhibitors, under various mobile phase compositions, using various temperatures. The enantioseparation was evaluated by comparing the (R,R)-Whelk-01 column performance with those of Chiralpak AD and Chiralcel OD. Significant differences were observed in their chiral recognition, as revealed from their retention, selectivity, resolution and elution order. Performances of the Chiralpak AD column were superior to those of the Chiralcel OD and (R,R)-Whelk-01 columns. Some of the racemic compounds were resolved by semipreparative chromatography on Chiralpak AD column in order to study the chiroptical proprieties of the single enantiomers.  相似文献   

6.
The enantioselective separation of omeprazole on different chiral stationary phases was investigated. The two enantiomers could be resolved on three different phases with immobilized protein, Chiral-AGP, Ultron ES-OVM and BSA-DSC, employing aqueous mobile phases with 2-propanol as organic modifier. On Chiralpak AD, an amylose-based chiral stationary phase, the enantiomers of omeprazole and three analogues could be separated using a non-polar hexane-ethanol mobile phase. For omeprazole the retention order was reversed when 2-propanol was replaced with ethanol or methanol as the modifier of hexane in the mobile phase.  相似文献   

7.
夏立钧  周永贵 《分析化学》1997,25(12):1374-1377
在以正己烷-异丙醇为移动相的体系中,用ChiralpakAD和ChiralcelOD作为手性固定相对15种乙炔基氮杂环丙烷类化合物对映体进行了HPLC手性拆分。这些化合物至少在一支柱上能基线级分离。  相似文献   

8.
在以正己烷-异丙醇为移动相的体系中,用ChiralcelOD,ChiralcelOJ及ChiralpakAD作为手性固定相对13种β-氨基醇及β-羟基硫醚类化合物对映体进行HPLC手性拆分,这些化合物至少能在一支柱上得到基线级分离。考察了它们于不同浓度配比的这类洗脱体系中在柱上的色谱行为。实验表明化合物取代基的性质明显影响它们在手性柱上的拆分。手性固定相与外消旋样品上的极性基团之间的氢键作用和π-π作用可能是进行手性识别的主要原因。方法已用于非手性环氧化合物不对称开环反应产物β-氨基醇及β-羟基硫醚类化合物的光学纯度鉴定。  相似文献   

9.
The LC enantiomeric separation of several dual PPARα/γ agonists on the commercially available Chiralcel OD and Chiralpak AD columns has been evaluated in normal phase mode using a mobile phase consisting in a mixture of n-hexane, 2-propanol and trifluoroacetic acid at constant volume ratio. Most compounds were separated as underivatized acids without requiring time consuming analysis. Some complementary selectivity was evidenced on the two investigated chiral stationary phases related to the different accessibility of the active sites of the helical cavities. Additional information on the chiral recognition mechanism were deduced from the chromatographic behaviour of some selected methyl esters.  相似文献   

10.
This paper describes the separation of the four sets of stereoisomers of nucleoside analogs, new potential antiviral agents by direct analytical HPLC methods using derivatized cellulose and amylose chiral stationary phases. The resolution was made using normal-phase methodology with a mobile phase consisting of n-hexane-alcohol (ethanol or 2-propanol) in various percentages, and a silica-based cellulose tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H), or tris-methylbenzoate (Chiralcel OJ) and a silica-based amylose tris-3,5-dimethylphenylcarbamate (Chiralpak AD) or tris-(S)-1-phenylethylcarbamate (Chiralpak AS). The effects of structural features on the extent of discrimination between the stereoisomers were examined through the retention, the selectivity and the resolution factors as well as the elution order. Baseline separation (Rs>1.5) was easily obtained in many cases. The resolution results were complementary between the different columns.  相似文献   

11.
Summary Two improved methods for the enantiomeric separation of racemic aminoglutethimide (±AG) and its acetylated metabolite (±AAG) have been developed. Direct liquid chromatographic resolution of the enantiomers of aminoglutethimide and its acetylated metabolite was accomplished using Chiralcel OD and Chiralcel OJ columns without any derivatization. Maximum resolution of 8.87 and 2.23 was obtained for the enantiomers of aminoglutethimide and its acetylated metabolite using a Chiralcel OD column, while maximum resolution of 10.34 and 7.01 was obtained for the enantiomers using a Chiralcel OJ column. Optimization of separation was obtained using different concentration of 2-propanol in hexane as a mobile phase.  相似文献   

12.
The liquid chromatographic enantiomer separation of N-fluorenylmethoxycarbonyl (FMOC) protected alpha-amino acids and their ethyl ester derivatives was performed on polysaccharide-derived chiral stationary phases, Chiralcel OD, Chiralpak AD, and Chiralpak AS. In general, Chiralcel OD and Chiralpak AD showed good performance for resolution of N-FMOC alpha-amino acids and their ethyl esters, respectively. All investigated N-FMOC alpha-amino acid enantiomers were baseline separated on Chiralcel OD or Chiralpak AD, whereas N-FMOC alpha-amino acid ethyl ester enantiomers were baseline resolved (alpha = 1.15-3.03) on Chiralpak AD, except for two analytes. The L-enantiomers of all examined FMOC alpha-amino acid ethyl ester derivatives are preferentially retained on Chiralpak AD, while the elution orders of the other enantiomer separations are not consistent.  相似文献   

13.
In a previous publication, solid-state NMR data showed that the structure of Chiralpak AD chiral stationary phase (CSP) was altered by changing the concentration of ethanol or 2-propanol modifier in the chromatographic mobile phase. This present paper reports the effect of the CSP structural change on chiral selectivity alpha. The enantiomers of a series of compounds were chromatographed using ethanol or 2-propanol in various concentrations as mobile-phase modifier and the alpha values were determined. Changes of alpha were observed for some enantiomeric pairs when ethanol and 2-propanol concentrations were varied. These data correlate with previous findings on the structural changes of the CSP. Not every enantiomeric pair showed changes in alpha as the alcohol concentration was varied, indicating that the chiral selectivity depends not only on the CSP's structure, but also on the structures of the analytes.  相似文献   

14.
This paper reports an unusual effect of column temperature on the separation of the enantiomers of dihydropyrimidinone (DHP) acid and its methyl ester on a derivatized amylose stationary phase by normal-phase liquid chromatography. The separation of the DHP acid enantiomers was investigated using both carbamate-derivatized amylose and cellulose stationary phases (Chiralpak AD and Chiralcel OD) with an ethanol-n-hexane (EtOH-n-Hex) mobile phase. On the amylose phase, the van 't Hoff plot of the retention factor of the S-(+)-DHP acid was observed to be non-linear while that of R-(-)-DHP acid was linear. Likewise, the van 't Hoff plot for DHP acid enantioselectivity was non-linear with a transition occurring at approximately 30 degrees C. Furthermore, the van 't Hoff plot for the DHP acid enantioselectivity factor for data taken when heating the column from 5 to 50 degrees C was not superimposable with the same plot prepared with data from the cooling process from 50 to 5 degrees C. This observation suggested that the stationary phase was undergoing a thermally induced irreversible conformational change that altered the separation mechanism between the heating and cooling cycles. Similar phenomena were observed for the separation of the enantiomers of the DHP ester probe compound. The conformational change of the AD phase was shown to depend on the polar component of the mobile phase. When 2-propanol (2-PrOH) was used as the modifier instead of EtOH, the van 't Hoff plots for DHP acid were linear and thermally reversible, suggesting that no such irreversible conformational change occurs with this modifier. Conversely, when the AD phase was pre-conditioned with a more polar methanol (MeOH) or water containing mobile phase, thermal irreversibility of DHP acid enantioselectivity was once again observed. Interestingly, when the stationary phase was changed to its cellulose analogue, the Chiralcel OD, all van 't Hoff plots for the retention and selectivity of DHP acid were thermally reversible for both EtOH-n-Hex and 2-PrOH-n-Hex mobile phases.  相似文献   

15.
黄虎  金京玉  李元宰 《色谱》2009,27(4):467-471
考察了多糖类手性固定相在含有酸性或碱性添加剂的流动相下高效液相色谱法拆分β受体阻滞剂对映体的效果。色谱条件: 流动相为10%~30%(体积分数,下同)乙醇-正己烷(含0.1%三氟乙酸)和10%~30%乙醇-正己烷(含0.1%三乙胺),流速1.0 mL/min,紫外检测波长254 nm。结果表明,在直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)衍生物手性固定相(Chiralpak AD和Chiralpak IA)上拆分β受体阻滞剂对映体,酸性添加剂的流动相体系与碱性添加剂的流动相体系相比,碱性添加剂的流动相的拆分效果比酸性添加剂的流动相要好。而在纤维素-三(3,5-二甲基苯基氨基甲酸酯)衍生物的手性固定相(Chiralcel OD和Chiralpak IB)上分离β受体阻滞剂,比较酸性添加剂的流动相与碱性添加剂的流动相的拆分效果,发现酸性添加剂的流动相条件下对映体的保留减弱,但对映体的选择性增大,特别是在Chiralcel OD上,酸性添加剂的流动相体系对对映体的选择性非常理想,而且随着流动相中酸性添加剂含量的增加,β受体阻滞剂对映体的分离效果更佳。  相似文献   

16.
Enantiomeric separations of 18 chiral polychlorinated biphenyls (PCBs) were investigated on three polysaccharide-type chiral stationary phases (CSPs; Sino-Chiral OJ, Chiralpak IB, and Chiralcel OD) by supercritical fluid chromatography (SFC). With these commonly used polysaccharide CSPs, 17 PCBs except PCB 135 (R(S) = 0.81) were well resolved (R(S) > 1.5) under appropriate mobile phases and temperatures. Using Sino-Chiral OJ, 14 PCBs could be baseline-separated, while only one and nine PCBs could be completely separated using Chiralpak IB and Chiralcel OD, respectively. The influence of column temperature was studied for the optimization of resolution, as well as for the type and percentage of organic modifier in the mobile phase. The resolution decreased as the temperature increased in the range of 26-40 °C in which the enantiomeric separations were an enthalpy-driven process. The addition of modifiers in the mobile phase decreased the resolution of the PCB enantiomers, but it clearly shortened their retention time. These separation results indicate that SFC is a promising chromatographic technique for chiral separation and enantiopure standard preparation.  相似文献   

17.
Summary The separation of enantiomers of substituted cyclohexanecarboxamides, benzamides and chemical precursors of Rho-kinase inhibitors was achieved using derivatized polysaccharide-based chiral stationary phases. Separations were by normal phase HPLC with a mobile phase ofn-hexane-alcohol (methanol, ethanol or 2-propanol) in various proportions, and a silica-based cellulose tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H), tris-methylbenzoate (Chiralcel OJ), a silica-based amylose tris-(S)-1-phenylethylcarbamate (Chiralpak AS), or tris-3,5-dimethylphenylcarbamate (Chiralpak AD). The effects of cencentration of various aliphatic alcohols in the mobile phase were investigated. The effect of structural features on the discrimination between the enantiomers was examined. The isolation of milligram amounts of enantiomers of two derivatives was performed on an analytical column by multiple repetitive injections under overload conditions.  相似文献   

18.
Chiralpak IB, a new chiral stationary phase (CSP) containing cellulose tris(3,5-dimethylphenylcarabamate) immobilized onto silica gel, is investigated for the direct enantioselective separation of a set of racemic N-alkylated barbiturates and analogs of thalidomide alkylated in position 3 of the piperidin-2,6-dione ring using different nonstandard solvents such as dichloromethane (DCM), ethyl acetate, THF, methyl tert-butyl ether as an eluent and diluent, respectively, in HPLC. The separation, resolution, and elution order of the investigated compounds were compared on both immobilized and coated cellulose tris(3,5-dimethylphenylcarbamate) CSPs (Chiralpak IB and Chiralcel OD, respectively) using a mixture of n-hexane/2-propanol (90:10 v/v) as mobile phase with different flow-rates and fixed UV detection at 254 nm. The effect of the immobilization of the cellulose tris-(3,5-dimethylphenylcarbamate) CSP on silica (Chiralpak IB) on the chiral recognition ability was noted as the coated phase (Chiralcel OD) possesses a higher resolving power in some cases than the immobilized one (Chiralpak IB). However, a few racemates, which were not or poorly resolved on the immobilized Chiralpak IB or the coated Chiralcel OD when using standard solvents were most efficiently resolved on the immobilized Chiralpak IB upon using nonstandard solvents. Furthermore, the immobilized phase withstands the nonstandard (prohibited) HPLC solvents mentioned previously when used as eluents or as a dissolving agent for the analyte itself. An example of inversion or apparent inversion of elution order on Chiralpak IB is reported. The direct analysis of a spiked plasma sample extracted using DCM on Chiralpak IB is also shown.  相似文献   

19.
The enantiomeric separation of a series of imidazole analogues of Fluoxetine and Miconazole endowed with potent antifungal activity was performed using cellulose tris(4-methylbenzoate) (Chiralcel OJ) and cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD) as chiral stationary phases. Binary mixtures of n-hexane and alcohol as well as pure alcohols (ethanol or 2-propanol) were used as eluents. The enantiomer elution order was monitored by chiroptical detectors based on on-line optical rotation and circular dichroism measurements. For some of the compounds studied very high enantioseparation factor values (alpha > 7) on Chiralcel OJ CSP were observed. In order to study the chiroptical characteristics of the two most biologically active compounds, chromatographic resolutions were carried out on a semipreparative scale. Assignment of the absolute configuration was empirically established by comparing the CD spectra of the separated enantiomers with those obtained from the enantiomers of Miconazole.  相似文献   

20.
Ghanem A  Hoenen H  Aboul-Enein HY 《Talanta》2006,68(3):602-609
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号