首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王存  张毅  孟丽  赵欣  王跃 《分析测试学报》2017,36(9):1124-1128
采用滴涂法得到多壁碳纳米管(MWCNTs)修饰的玻碳电极(GCE),通过电沉积方法将3-氨基-5-巯基-1,2,4-三唑(TA)沉积在MWCNTs/GCE表面,制备了聚(3-氨基-5-巯基-1,2,4-三唑)/多壁碳纳米管修饰电极(p TA/MWCNTs/GCE)。采用循环伏安法(CV)和示差脉冲伏安法(DPV),研究了尿酸(UA)、黄嘌呤(XA)和次黄嘌呤(HX)在该修饰电极上的电化学行为。结果表明,该修饰电极对UA、XA和HX均有较好的电催化活性作用,能实现对3种物质的同时测定。UA、XA和HX在该修饰电极上的线性范围分别为9.0~739.0、2.0~259.0、1.0~353.0μmol/L;检出限分别为0.67、0.17、0.33μmol/L。该修饰电极已成功用于尿液和血清实际样品中UA、XA和HX的同时测定,回收率为98.8%~105.5%。  相似文献   

2.
A novel covalently modified glassy carbon electrode with β-cyclodextrin was prepared via electropolymerization technique for the simultaneous determination of uric acid(UA), xanthine(XA), hypoxanthine(HX) and dopamine(DA). This new electrode presented an excellent electrocatalytic activity towards the oxidation of UA, XA, HX and DA by cyclic voltammetry(CV) method. The oxidation peaks of the four compounds were well defined and had the enhanced peak currents. The separation potentials of the oxidation peaks for DA-UA, UA-XA and XA-HX were 150, 390 and 360 mV in CV, respectively. By means of differential pulse voltammetry(DPV) method, the calibration curves in the ranges of 10-225, 5-105, 10-170 and 5-150 μmol/L were obtained for UA, XA, HX and DA, respectively. The lowest detection limits(S/N=3) were 5, 1.25, 5 and 1.5 μmol/L for UA, XA, HX and DA, respectively. The practical application of the modified electrode was demonstrated by the determination of DA in hydrochloride injection and UA, XA, HX in human urine samples.  相似文献   

3.
以三聚氰胺为原料, 采用热聚合法合成了类石墨烯状二维片状氮化碳(g-C3N4)纳米材料; 通过电沉积和高电位氧化的方法制得氧化聚咪唑(PImox)/g-C3N4修饰电极(PImox/g-C3N4/GCE). 采用扫描电子显微镜(SEM)和X射线粉末衍射仪(XRD)对g-C3N4纳米材料进行了表征; 通过循环伏安法(CV)和差分脉冲伏安法(DPV)考察了尿酸(UA)、 黄嘌呤(XA)和次黄嘌呤(HX)在该电极上的电化学行为. 结果表明, UA, XA和HX的检测线性范围分别为2.0~216.0, 5.0~542.0和5.0~778.0 μmol/L; 检出限分别为0.17, 0.30和0.30 μmol/L. 将该修饰电极用于实际样品(血清和尿液)中UA, XA和HX的同时测定, 加标回收率为98.4%~105.2%.  相似文献   

4.
A sensitive electrochemical method was developed for simultaneous determination of uric acid (UA) and xanthine (XA) at a glassy carbon electrode modified with multi-wall carbon nanotubes (MWNTs) film. The oxidation peak currents of UA and XA were increased at the MWNTs film electrode significantly. The experimental parameters, which influence the peak currents of UA and XA, such as the amount of MWNTs on the glassy carbon electrode, the pH of the solution, accumulation time, and scan rate, were optimized. Under optimum conditions, the peak currents were linear to the concentration of UA over the wide range from 1 x 10(-7) mol L(-1) to 1 x 10(-4) mol L(-1) and to that of XA over the wide range from 2 x 10(-8) mol L(-1) to 2 x 10(-5) mol L(-1). The interferences studies showed that the MWNTs-modified electrode exhibited excellent selectivity in the presence of ascorbic acid, dopamine, and hypoxanthine. The proposed procedure was successfully applied to detect UA and XA in human serum without any preliminary treatment.  相似文献   

5.
制备了一种新颖的Nation-离子液体一多壁碳纳米管复合膜修饰电极,并研究了抗坏血酸(AA)、多巴胺(DA)和尿酸(uA)在该修饰电极上的电化学行为.该修饰电极结合了多壁碳纳米管良好的导电性、离子液体优良的催化性能及Nation的高选择性等优点,对AA、DA和UA的氧化具有很好的催化和分离效果,实现了AA、DA和UA的同时测定.在三者共存体系中,AA和DA、DA和UA的氧化峰电位差分别为148和167mV.对AA、DA和UA的同时检测,线性范围分别为5-3200、1~1100和1-300gmol/L,检出限分别为1.66、0.33和0.33gmol/L.该修饰电极选择性好、稳定性高、重现性好,有望用于实际样品中AA、DA和UA的同时检测.  相似文献   

6.
采用电化学方法将钙羧酸(CCA)聚合修饰在玻碳电极(GCE)表面制备了聚钙羧酸指示剂修饰玻碳电极(PCCA/GCE),并用循环伏安法和交流阻抗法研究了电极的电化学性能。结果表明:在pH 6.0的磷酸盐缓冲溶液中,多巴胺(DA)和尿酸(UA)在聚钙羧酸修饰电极上的氧化峰得以分开,峰电位差为0.14V,据此提出了聚钙羧酸修饰电极差分脉冲伏安法同时测定多巴胺和尿酸的方法。DA和UA的浓度分别在5.0~43.8μmol.L-1和5.0~50.0μmol.L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)分别为0.2μmol.L-1和0.5μmol.L-1。方法可用于多巴胺注射液样品中DA和UA的测定,测定值的相对标准偏差(n=5)依次为2.43%和2.35%。  相似文献   

7.
A large mesoporous carbon modified glassy carbon electrode (LMC/GCE) was prepared. The morphology and structure of the LMC were characterized. The LMC/GCE was used to investigate the electrochemical behaviors of metabolites of purine nucleotide, uric acid (UA), xanthine (XA) and hypoxanthine (HX). The LMC/GCE exhibited high electrocatalytic activity towards the three compounds when compared with those obtained at the GCE. Furthermore, the LMC/GCE realized simultaneous determination of UA, XA and HX at a physiological pH of 7.0 with wide linear range and low detection limit. The electrocatalytic activity of the LMC/GCE towards guanine (G) and adenine (A) was also investigated.  相似文献   

8.
刘雪  王兰  樊阳  刘凤杰 《化学通报》2012,(5):458-462
利用在玻碳电极上修饰了TiO2-石墨烯-Nafion复合膜制得的修饰电极进行多巴胺(DA)和尿酸(UA)的同时测定。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了该修饰电极的电化学行为。在pH为7.0的磷酸盐缓冲液(PBS)中,修饰电极对于DA和UA的电化学氧化具有良好的电催化性能。DA和UA的氧化峰电流分别在2~120和60~300μmol/L浓度范围内呈良好的线性关系,检出限分别为0.066和0.102μmol/L。实验结果表明,TiO2-石墨烯-Nafion复合膜修饰电极显著提高了检测的灵敏度,并表现出良好的选择性和重现性。  相似文献   

9.
This paper describes the simultaneous determination of ascorbic acid (AA), norepinephrine (NE) and uric acid (UA) using a graphene modified glassy carbon electrode (GME) in pH 4.0 phosphate buffer solution. The electrochemical behaviors of AA, NE and UA at a bare glassy carbon electrode (GCE) and the GME were studied by cyclic voltammetry. Bare GCE failed to resolve the voltammetric signals of AA, NE and UA in a mixture, whereas the GME not only resolved their voltammetric signals, but also exhibited excellent electrocatalytic activity towards their electrochemical oxidation. The oxidation peak currents of AA, NE and UA were linearly proportional to their concentrations over the range of 1.0.0–1000.0, 0.6–45.0 and 1.0–100.0 μM, respectively, and their detection limits were 1.2, 0.10 and 0.60 μM, respectively, The modified electrode is of excellent sensitivity and selectivity, and has been satisfactorily used for the simultaneous determination of AA, NE and UA in their ternary mixture.  相似文献   

10.
采用循环伏安法(CV)制备了聚钙羧酸(PCCA)膜修饰的碳糊电极(CPE)。考察了电极对多巴胺(DA)、尿酸(UA)的电氧化催化性能。结果显示,聚钙羧酸膜修饰碳糊电极(PCCA/CPE)对DA有良好的电催化效果,DA呈现出一对准可逆的氧化还原峰,氧化峰电流与DA浓度在3.0×10-7~1.0×10-4mol/L范围内呈线性关系,检出限为1×10-7mol/L(S/N=3)。使用微分脉冲伏安法(DPV),DA和UA在PCCA/CPE上的氧化峰能完全分离(ΔEp=192 mV),且峰电流与浓度均呈现良好的线性关系,可实现对DA和UA的同时测定。实验还进行了实际样品测定。  相似文献   

11.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine) (PMT)-modified glassy carbon electrode (GCE) to form a nano-Au/PMT composite-modified GCE (nano-Au/PMT/GCE). Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode. The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) in phosphate buffer solution (pH = 7.00). Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0×10-8 to 10-6 mol/L for DA and 7.0×10-8 to 10-6 mol/L for UA. The detection limits were 3.7×10-8 mol/L for DA and 4.5×10-8 mol/L for UA at a signal-to-noise ratio of 3. According to our experimental results, nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.  相似文献   

12.
A carbon paste electrode that was chemically modified with multiwall carbon nanotubes and p-aminophenol was used as a selective electrochemical sensor for the simultaneous detection of hydroxylamine (HX) and phenol. Cyclic voltammetry, double potential-step chronoamperometry, square wave voltammetry (SWV), and electrochemical impedance spectroscopy were used to investigate the use of p-aminophenol in the carbon nanotubes paste matrixes as a mediator for the electrocatalytic oxidation of HX and phenol in aqueous solution. The coefficient of electron transfer and catalytic reaction rate constant were determined using the electrochemical methods. Under optimized conditions, the electrocatalytic oxidation current peaks for HX and phenol increased linearly with concentration in the range of 0.5-180.0 and 10.0-650.0 μmol/L for HX and phenol, respectively. The detection limits for HX and phenol were 0.15 and 7.1 μmol/L, respectively. The anodic potential peaks of HX and phenol were separated by 0.65 V in SWV. Because of good selectivity and sensitivity, the present method provides a simple method for the selective detection of HX and phenol in practical samples such as water samples.  相似文献   

13.
This work demonstrates gold nanoparticles (AuNPs)/functionalized multiwalled carbon nanotubes (f‐MWCNT) composite film modified gold electrode via covalent‐bonding interaction self‐assembly technique for simultaneous determination of salsolinol (Sal) and uric Acid (UA) in the presence of high concentration of ascorbic acid (AA). In pH 7.0 PBS, the composite film modified electrode exhibits excellent voltammetric response for Sal and UA, while AA shows no voltammetric response. The oxidation peak current is linearly increased with concentrations of Sal from 0.24–11.76 μmol L?1 and of UA from 3.36–96.36 μmol L?1, respectively. The detection limits of Sal and UA is 3.2×10?8 mol L?1 and 1.7×10?7 mol L?1 , respectively.  相似文献   

14.
We are presenting an electrochemical sensor for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of even high concentrations of ascorbic acid (AA). It based on a glassy carbon electrode modified with an electroactive film of polymerized dibromofluorescein. The electrochemical behaviors of DA and UA were studied by cyclic voltammetry using the modified electrode. It exhibits excellent electrocatalytic activity towards the oxidation of the two analytes. Most notably, the oxidation potentials differ by 180 and 200?mV between AA-DA and DA-UA, respectively. Thus, excellent selectivity towards the oxidation of DA and UA in the presence of even high concentrations of AA is accomplished. Under the optimum conditions, the anodic peak currents are linearly related to the concentrations of DA and UA in the range from 0.2 to 200?μmol?L-1 and from 1.0 to 250?μmol?L-1, respectively. The detection limits for DA and UA are 0.03?μmol?L-1 and 0.2?μmol?L-1, respectively (at an S/N of 3). The method has good selectivity and sensitivity and was successfully applied to the simultaneous determination of DA and UA in spiked human serum.
Figure
A novel electrochemical sensor based on poly (dibromofluorescein) film modified glassy carbon electrode has been fabricated and used for the simultaneous determination of dopamine and uric acid in the presence of high concentration of ascorbic acid with good selectivity and sensitivity.  相似文献   

15.
A modified electrode was prepared by modification of the carbon paste electrode (CPE) with a nanostructured material. This nanostructure with electrocatalytic activity was synthesized by combination of poly pyrrole and copper oxide nanoparticles (PPy/CuO). The structure and morphology of PPy/CuO was studied. The fabricated modified electrode (CPE‐PPy/CuO) exhibited an excellent electrocatalytic activity toward levodopa (L‐DOPA) and uric acid (UA) oxidation because of high conductivity, low electron transfer resistance and catalytic effect. The CPE‐PPy/CuO had a lower overvoltage and enhanced electrical current with respect to the bare CPE for both L‐DOPA and UA. Also, the modified electrode showed a good resolution for the overlapped anodic peaks of L‐DOPA and UA. This electrode was used for the successful simultaneous determination of L‐DOPA and UA. The electrochemical sensor responded to L‐DOPA and UA in the concentration range of 0.050–1200 μM and 0.040–2000 μM, respectively. The detection limits were obtained by differential pulse voltammetry as 15 nM for L‐DOPA and 20 nM for UA. Finally, the proposed electrode was used for determination of L‐DOPA and UA in real samples using standard addition method.  相似文献   

16.
《Electroanalysis》2003,15(21):1693-1698
The voltammetric behaviors of uric acid (UA) and L ‐ascorbic acid (L ‐AA) were studied at well‐aligned carbon nanotube electrode. Compared to glassy carbon, carbon nanotube electrode catalyzes oxidation of UA and L ‐AA, reducing the overpotentials by about 0.028 V and 0.416 V, respectively. Based on its differential catalytic function toward the oxidation of UA and L ‐AA, the carbon nanotube electrode resolved the overlapping voltammetric response of UA and L ‐AA into two well‐defined voltammetric peaks in applying both cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which can be used for a selective determination of UA in the presence of L ‐AA. The peak current obtained from DPV was linearly dependent on the UA concentration in the range of 0.2 μM to 80 μM with a correlation coefficient of 0.997. The detection limit (3δ) for UA was found to be 0.1 μM. Finally, the carbon nanotube electrode was successfully demonstrated as a electrochemical sensor to the determination of UA in human urine samples by simple dilution without further pretreatment.  相似文献   

17.
The present work demonstrates that simultaneous determination of adrenalin (AD) and paracetamol (PAR) can be performed on single‐walled carbon nanotube/chitosan/ionic liquid modified glassy carbon electrode (SWCNT‐CHIT‐IL/GCE). The electro‐oxidations of AD and PAR were investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV) and also chronoamperometry (CA) methods. DPV experiments showed that the oxidation peak currents of AD and PAR are proportional to the corresponding concentrations over the 1–580 μmol/L and 0.5–400 μmol/L ranges, respectively. The RSD at a concentration level of 15 μmol/L AD and 15 μmol/L PAR were 1.69% and 1.82%, respectively. Finally the modified electrode was used for simultaneous determination of AD and PAR in real samples with satisfactory results.  相似文献   

18.
A novel method has been developed for the determination of methimazole, which was based on the enhanced electrochemical response of methimazole at the acetylene black/chitosan composite film modified glassy carbon electrode. The electrochemical behavior of methimazole was studied at this film electrode by cyclic voltammetry and differential pulse voltammetry. The experimental results showed that methimazole exhibited a remarkable oxidation peak at 0.63V at the film electrode. Compared with the bare glassy carbon electrode, the oxidation peak current increased greatly, and the peak potential shifted negatively, which indicated that the acetylene black/chitosan film electrode had good catalysis to the electrochemical oxidation of methimazole. The enhanced oxidation current of methimazole was indebted to the nano-porus structure of the composite film and the enlarged effective electrode area. The influences of some experimental conditions on the oxidation of methimazole were tested and the calibration plot was examined. The results indicated that the differential pulse response of methimazole was linear with its concentration in the range of 1.0×10(-7) to 2.0×10(-5)mol/L with a linear coefficient of 0.998, and in the range of 4.0×10(-5) to 3.0×10(-4)mol/L with a linear coefficient of 0.993. The detection limit was 2.0×10(-8)mol/L (S/N=3). The film electrode was used to detect the content of methimazole in rat serum samples by the standard addition method with satisfactory results.  相似文献   

19.
开发了一种磁性Fe3O4纳米粒子和2-(3,4-二羟苯基)苯并噻唑(DPB)修饰的磁性棒碳糊电极(MBCPE)用于电化学检测肼.首先将DPB自组装在Fe3O4纳米粒子上,然后将此复合物吸附于设计的MBCPE上. MBCPE电极将磁性纳米粒子吸引到电极表面.所得新型电极具有高的导电性和大的有效比表面积,因而对肼的电催化氧化反应有非常大的电流响应.采用伏安法、扫描电镜、电化学阻抗谱、红外光谱和紫外-可见光谱对修饰电极进行了表征.采用伏安法研究了在磷酸盐缓冲溶液(pH=7.0)中MBCPE/Fe3O4NPs/DPB电极上肼的电化学行为.作为电化学传感器, MBCPE/Fe3O4NPs/DPB电极对肼氧化反应表现出极高的电催化活性.在DPB存在下,肼的氧化电势下降,但其催化电流增加.电催化电流与肼浓度在0.1–0.4和0.7–12.0μmol/L二个区间内表现出线性关系,检测限为18.0 nmol/L.另外,研究了MBCPE/Fe3O4NPs/DPB电极同时检测肼和苯酚的性能.伏安实验结果显示,苯酚的线性区域为100–470μmol/L,检测限为24.3μmol/L.采用此电极检测了水样品中的肼和苯酚.  相似文献   

20.
采用电化学聚合法制备了聚色氨酸/镍复合膜修饰玻碳电极,研究了抗坏血酸在该修饰电极上的电化学行为,建立了测定痕量抗坏血酸的新方法。在pH6.2的磷酸盐缓冲溶液中,抗坏血酸在修饰电极上产生一个灵敏的氧化峰,采用线性扫描伏安法测定,其氧化峰电流与抗坏血酸浓度在2.0×10^-6 -1.0×10^-3mol/L范围内呈良好的线性关系,检出限为5.0×10^-7mol/L。对1.0×10^-4mol/L抗坏血酸溶液平行测定6次,测定结果的相对标准偏差为1.9%。该法用于片剂中抗坏血酸含量的测定,加标回收率为97.8%~101.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号