首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A novel method of analyzing the switching field distribution (SFD) and magnetic correlation length of perpendicular magnetic recording media that uses major and minor magnetization loops is proposed. By applying the analysis to a series of capped perpendicular media, we found that a thick capping layer with a low saturation magnetization effectively reduced SFD without rapidly increasing the magnetic correlation length. Transmission electron microscope observation suggests that the SFD is narrowed by the increased uniformity of intergranular exchange coupling via the thick capping layer. Evaluations of recording characteristics demonstrated a close correlation between narrower SFDs and improved recording performance. Reducing exchange coupling dispersion is a clear solution for improving the performance of recording media.  相似文献   

2.
The magnetic properties of the spin-1 bond and crystal field dilution Blume-Emery-Griffiths (BEG) model in the presence of magnetic field are investigated on a simple cubic lattice by using effective field theory (EFT). In the M-H plane, the common action of bond and crystal field dilution leads to the exhibition of an irregular initial magnetization curve and slows down the magnetization process. The peak of the susceptibility curve has an explicit decline and shows a distinct shift toward the direction of increase of magnetic field. On the other hand, in the M-T plane, the magnetization curves show a discontinuity and a vertical leap in the small range of magnetic field when the negative crystal field is larger and the ratio of biquadratic and exchange interaction is positive (α>0). These results have not been revealed in previous works.  相似文献   

3.
4.
Experimental and theoretical studies of the magnetization curves M(H) obtained for plates of an anisotropic hard superconductor are performed. The samples are YBCO single-domain textured crystals with the c axis lying in the sample plane. It is shown that, for some orientations of the magnetic field in the sample plane, the magnetization curves contain additional extrema; at the same time, the virgin magnetization curve M(H) exhibits features characteristic of the peak effect. This proves that the anisotropy of the current-carrying ability can give rise to a new type of peak effect.  相似文献   

5.
Bit patterned media (BPM) recording is a candidate for extremely high density magnetic recording. A micromagnetic model is built up to analyze the phase diagram of the correct-write-in condition in BPM above 2 Tb/in.2 fabricated by lithography or ion irradiation methods. The target of the study is to acquire the relationship between the recording performance and the magnetic properties of the media. The medium includes the polycrystalline grains and grain boundary. In BPM fabricated by lithography with FCT structure, two phase diagrams of the correct-write-in condition are found for the anisotropy angular distribution Δθ, the ratio of tetragonal anisotropy K22 to uniaxial anisotropy K1 and the uniaxial anisotropy distribution ΔK1. In BPM fabricated by ion irradiation methods, two phase diagrams of the correct-write-in condition are analyzed for the ratio of saturation magnetization Ms/Ms, anisotropy field Hk/Hk and the exchange field Hex/Hex in the ion irradiated region and the bit islands.  相似文献   

6.
In this paper, specific issues related to high-density perpendicular magnetic recording processes, such as transition noise properties and cross-track correlation lengths, were investigated with the help of micromagnetic analysis. The effects of media parameters were taken into consideration, including intergranular exchange coupling, and exchange distribution, irregular grain shapes, magnetization saturation distribution, and anisotropy distribution. The micromagnetic simulation results showed that the effect of anisotropy distribution on transition noise is more significant than magnetization saturation distribution, and it is crucial to reduce this effect to achieve a high signal-to-noise ratio. Additionally, a new method to further estimate the partial erasure threshold was proposed to approximate the partial erasure effects, and the relation between the microtrack jitter and total track jitter was investigated.  相似文献   

7.
In this work we present a detailed numerical investigation on the magnetic domain formation and magnetization reversal mechanism in sub-millimeter amorphous wires with negative magnetostriction by means of micromagnetic calculations. The formation of circular magnetic domains surrounding a multidomain axially oriented central nucleus was observed for the micromagnetic model representing the amorphous wire. The magnetization reversal explained by micromagnetic computations for the M-H curve is described in terms of a combined nucleation-propagation−rotational mechanism after the saturated state. Results are interpreted in terms of the effective magnetic anisotropy.  相似文献   

8.
The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity.The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.  相似文献   

9.
The magnetic properties (magnetization curve, ferromagnetic resonance spectrum) of nanocrystalline Fe79Zr10N11 films obtained by RF magnetron sputtering with subsequent annealing were studied experimentally, along with the fundamental magnetic constants of these films (saturation magnetization M S, local magnetic anisotropy energy K, and the exchange coupling constant A). The magnetic properties are discussed within the random magnetic model, which determines the correlation of the magnetic properties with the fundamental magnetic constants and nanostructure parameters (grain size, magnetic anisotropy, and correlation radius R C). The exchange correlation length 2R L for the film magnetic microstructure was determined by correlation magnetometry.  相似文献   

10.
荣建红  云国宏 《物理学报》2007,56(9):5483-5488
用铁磁共振方法得到了双层铁磁薄膜的色散关系解析表达式.发现共振场依赖于层间耦合强度和应力场.假定层间为反铁磁性耦合,且铁磁层A有较强的平面内各向异性.随着外磁场的增强,铁磁层B中的磁化强度突然由最初的反平行转为平行,从而导致色散曲线的阶跃,并且发现光学模阶跃幅度比声学模大.随着应力场的增强,B层中磁化强度反转所需的外磁场减弱.此外,在不同的交换耦合强度和应力场下,光学模共振场对外磁场方向的依赖性较强. 关键词: 双层铁磁薄膜 界面相互作用 应力各向异性场 铁磁共振  相似文献   

11.
The magnetization curves of randomly oriented nanoparticles with combined symmetry of magnetic anisotropy were studied. The composite mode of the Stoner–Wolfarth model has been used. In terms of this model each nanoparticle is characterized by random cubic crystalline magnetic anisotropy and by random uniaxial magnetic anisotropy. The series of simulated magnetization curves have been obtained. Each curve corresponds to different contributions of cubic and uniaxial magnetic anisotropy energy to the full energy of an individual nanoparticle ku. Within this series we discuss the values of remnant magnetization, coercive force, both initial and maximal susceptibilities as the function of ku. It is found that the magnetic properties are not monotonous functions of ku. We discuss the possibility of comparing the calculated magnetization curves with the experimental curves in order to obtain new information on the magnetic constant.  相似文献   

12.
In this work we present a study of the effects of easy axis alignment on coupling effects in recording media. We have studied both particulate and thin film media representing both flexible and rigid disc materials. The texture in the systems has been determined via measurements of the angular dependence of remanence and the coupling determined using the well-established ΔM technique. In particulate media only dipolar coupling is present whereas in thin films intergranular exchange effects also occur. In our thin film samples the exchange coupling is weak so that dipolar effects dominate. We find that the dipolar effects in both systems increase with texture, increasing their dominance over exchange effects.  相似文献   

13.
The effect of magnetic properties on magnetization dynamics is studied for a spin torque oscillator (STO) composed of a free layer with an in-plane magnetic anisotropy and a reference layer with a fixed out-of plane magnetization. A transition from damped to uniform oscillations is observed for a critical value of saturation magnetization MS). In the uniform oscillations regime, the frequency is inversely proportional to MS. Similarly, the critical current for achieving uniform oscillations is investigated as a function of free layer intrinsic properties. In a second part of the study, the magnetostatic field (Hm) from the reference layer is considered and it is revealed that the out-of plane component of magnetization has a strong dependence on Hm. For a particular configuration, Hm could reduce the out-of plane component maximizing thus the out-put signal of the STO.  相似文献   

14.
Based on the Heisenberg model taking into account single-ion anisotropy and using a Green's function technique we have studied the influence of size and anisotropy effects on magnetization M, Neel temperature TN, coercive field Hc and spin excitation energy of antiferromagnetic nanoparticles. The properties are compared with those of ferromagnetic nanoparticles. We have shown that the enhanced magnetization M and coercive field Hc of antiferromagnetic nanoparticles is a surface effect, which is due to uncompensated surface spins. Moreover, the shape of the coercive field curve can be significantly influenced by surface magnetic anisotropy.  相似文献   

15.
Based on the Heisenberg model including single-ion anisotropy and using a Green's function technique we have studied the influence of doping effects on magnetization M, Neel temperature TN and coercive field Hc of antiferromagnetic nanoparticles. We have shown that the experimentally obtained room temperature magnetization M is due to surface or/and doping effects in antiferromagnetic nanoparticles.  相似文献   

16.
We report the experimental finding that a complete magnetizing field HM exists in magnetization reversal dynamics of ferromagnetic thin films, which is much larger than the apparent magnetic saturation field measured from the major hysteresis loop. Magnetization reversal dynamics contrastingly changes from nucleation dominated to wall-motion dominated according to an initial magnetization state magnetized by a field below HM, whereas it is basically unchanged when the field is larger than HM. The complete magnetizing field is found to be 1.5–2.0 times larger than the apparent magnetic saturation field and 6–10 times smaller than the anisotropy field in Co/Pd multilayer thin films.  相似文献   

17.
The low-temperature dependences of magnetic characteristics (namely, the coercive force H c , the remanent magnetization M r , local magnetic anisotropy fields H a, and the saturation magnetization M s ) determined from the irreversible and reversible parts of the magnetization curves for Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes are investigated experimentally. The behavior of the temperature dependences of the coercive force H c (T) and the remanent magnetization M r (T) indicates a single-domain structure of the particles under study and makes it possible to estimate their blocking temperature T B = 420–450 K. It is found that the saturation magnetization M s and the local magnetic anisotropy field H a vary with temperature as ~T 5/2.  相似文献   

18.
We present a combined experimental and theoretical study of the magnetization of one-dimensional atomic cobalt chains deposited on a platinum surface. We discuss the intrinsic magnetization parameters derived by X-ray magnetic circular dichroism measurements and the observation of ferromagnetic order in one dimension in connection with the presence of strong, dimensionality-dependent anisotropy energy barriers of magnetocrystalline origin. An explicit transfer matrix formalism is developed to treat atomic chains of finite length within the anisotropic Heisenberg model. This model allows us to fit the experimental magnetization curves of cobalt monatomic chains, measured parallel to the easy and hard axes, and provides values of the exchange coupling parameter and the magnetic anisotropy energy consistent with those reported in the literature. The analysis of the spin–spin correlation as a function of temperature provides further insight into the tendency to magnetic order in finite-sized one-dimensional systems. PACS 57.10.Pq; 75.30.-m; 75.30.Gw; 78.70.Dm  相似文献   

19.
This study deals with the temperature and composition dependence of magnetization and magnetic anisotropy of Cu2+-Cr3+ co-substituted magnesium ferrite, Mg1−xCuxCrxFe2−xO4 (x=0.0-0.5). The synthesized materials are characterized using thermo gravimetric analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray fluorescence, Mössbauer spectrometer, superconducting quantum interference device magnetometer and vibrating sample magnetometer. The M-H loops measured up to 50 kOe at 300, 200 and 100 K, revealed narrow hysteresis curves with a coercive field and saturation magnetization varying for different compositions. The high field regimes of these loops are modeled using the Law of Approach to saturation to extract anisotropy information and saturation magnetization. Both the saturation magnetization and the anisotropy constant are observed to increase with the decrease in temperature while decrease with the Cu-Cr co-substituents for all the samples. Explanation of the observed behavior is proposed in terms of the preference of the co-substituent ions of Cu2+ and Cr3+ and their predominant choice to substitute into the octahedral sites of the cubic spinel lattice.  相似文献   

20.
A linear cluster mean-field approximation is used to study the magnetic properties of the Ising ferromagnetic/antiferromagnetic superlattice, which is composed of a spin-1/2 ferromagnetic monolayer and a spin-1 antiferromagnetic monolayer with a single-ion anisotropy alternatively. By using the transfer matrix method, we calculate the magnetization and the initial magnetic susceptibility as functions of temperature for different interlayer coupling, single-ion anisotropy. We summarize the changing behaviors of the spin structure in ferromagnetic and antiferromagnetic layers and the characteristics of the corresponding magnetic susceptibilities, give the transition temperature as a function of the interlayer exchange coupling for different single-ion anisotropy, and analyze the features of the magnetization and the magnetic susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号