首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A hierarchical micromagnetic model has been used to investigate the effect of reducing track width upon recorded transition noise in longitudinal thin films. This has demonstrated that although effects due to magnetization transtion profile variations can be accounted for by simple statistics, timing jitter is a more complex phenomenon.  相似文献   

2.
A micromagnetic numerical technique has been used to demonstrate how intergranular exchange coupling and intrinsic anisotropy field dispersion can be extracted from measuring two types of M-H curves. A realistic grain configuration formed by planar Voronoi cells is used to simulate perpendicular magnetic media. This technique effectively separates the effects of intergranular exchange coupling and anisotropy dispersion by finding their correlation to differentiated M-H curves with different initial magnetization states, even in the presence of thermal fluctuation. The validity of this method is investigated with a series of intergranular exchange couplings and anisotropy dispersions for different media thickness. A relationship between the auto-correlation function of an ac-erased sample and dispersion of the exchange interaction is demonstrated. Utilizing magnetization auto-correlation functions, the magnetic intergranular exchange coupling statistics show a correlation with the auto-correlation function shape in terms of zero-cross and undershoot values.  相似文献   

3.
The interaction of a vortex-like domain wall moving in an external magnetic field with a three-dimensional periodic chain of cubic volumes with high values of the saturation magnetization and magnetic anisotropy constant has been investigated theoretically. It has been found that the result of the interaction depends on the initial distance between the wall and the region of inhomogeneity of magnetic parameters at the moment of turning on the external magnetic field. The pinning of domain walls near the regions with high values of the saturation magnetization and magnetic anisotropy constant has been investigated, and the anisotropy of the corresponding depinning fields has been revealed. The method of investigation is the numerical micromagnetic simulation.  相似文献   

4.
The static magnetization profile of glass-coated microwires with effective circular anisotropy is investigated using micromagnetics. In this family of microwires, the ferromagnetic nucleus with an amorphous character presents a magnetic structure composed of an inner region with axial domains and an outer region with circular domains, due to magnetoelastic anisotropy. A one-dimensional micromagnetic model is developed, taking into account both the exchange and magnetoelastic anisotropy energies, and solved quasi analytically. The total energy, magnetization profiles and magnetization curves are investigated as a function of radius and anisotropy constant of the nucleus. This work represents a fundamental study of the magnetization process in these amorphous microwires and provides guidelines for the production of microwires with tailored magnetic properties. En passant, the nucleation problem in an infinite cylinder, introduced by W.F. Brown, is revisited.  相似文献   

5.
The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a randomly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are determined by the competition between the anisotropy and exchange energies and by the dipole–dipole interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic domains and topological magnetization defects. Dipole–dipole interaction suppresses the formation of topological magnetization defects. The topological defects in the magnetic microstructure can cause a sharper change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy model.  相似文献   

6.
The transformation of the domain structure of micrometer-thick films with variations in the induced uniaxial anisotropy constant with the easy magnetization axis perpendicular to the film surface has been investigated using numerical micromagnetic simulation in the framework of a two-dimensional model of the magnetization distribution. The case where the tetra-axial crystallographic anisotropy exists in the film with uniaxial magnetic anisotropy has been considered. The transformation of the open domain structure into the structure with a magnetic flux closed inside the sample has been investigated in detail, and new types of 109-degree and 90-degree vortex-like domain walls and periodic domain structures have been obtained.  相似文献   

7.
The magnetic microstructure of nanostructured ferromagnets is an ensemble of stochastic magnetic domains—regions with sizes of the same order of magnitude as the length of magnetic orientation coherence. It is shown that the magnetization saturation curves can be used to determine the size of an element of the micromagnetic structure (stochastic domain size) and the effective anisotropy in this element, the size of a nanostructure element and its local anisotropy, and the dimension of exchange-coupled ferromagnetic nanoparticles.  相似文献   

8.
胡勇  杜安 《计算物理》2008,25(3):373-378
利用经典Heisenberg模型和Monte Carlo方法研究外磁场和反铁磁磁晶各向异性、交换相互作用对铁磁球均匀嵌入到反铁磁基体中的铁磁/反铁磁纳米体系磁滞回线的影响.模拟结果显示,外加反向最大磁场不同时,磁滞回线形状不同.当磁场正向增加时,体系的磁化强度会产生一个跃变,但跃变高度与反向场最大值无关.反铁磁磁晶各向异性越大,体系的交换偏置现象越明显,且磁化强度回到饱和值所需的外磁场越大.随着反铁磁基体交换相互作用的增大,在正向和负向磁场区域还可能出现新的磁滞现象.  相似文献   

9.
陈传文  项阳 《物理学报》2016,65(12):127502-127502
本文以Pt_(84)Co_(16)/TbFeCo双层交换弹簧体系为研究对象,利用微磁学连续模型,研究了软/硬磁层易轴方向相互垂直的新型体系中磁矩的分布特征.研究结果表明,磁矩偏离薄膜法线方向的角度在软磁层中沿膜厚方向的变化速率比硬磁层中的快.通过调节软磁层参数来增加软/硬磁的各向异性常数比、交换能常数比、饱和磁化强度比或外磁场强度,都可有效改变磁矩偏角在软/硬磁层中的变化速率.特别是当软/硬磁各向异性常数比值和交换能常数比值同时增大时,可以使得磁矩在硬磁层中的变化速率快于软磁层中的.而饱和磁化强度比值对磁矩变化速率的影响源于饱和磁化强度的变化会相应地改变各向异性常数,进而改变磁矩在软/硬磁层中磁矩方向变化速率的比值.此体系的磁滞回线显示磁性参数的改变可以显著改变体系的剩磁及饱和磁场.软磁层中的退磁场能及体系的正交各向异性可导致负的成核场.  相似文献   

10.
The dynamic behavior of a domain wall with cross-ties is analyzed on the basis of micromagnetic simulation with exact allowance for all main (exchange, magnetoanisotropic, and magnetostatic) interactions in thin magnetically uniaxial ferromagnetic films with planar anisotropy. It is found that the peculiarities of motion of such domain walls are closely related to the behavior of topological defects in the magnetization distribution (generation, motion, and annihilation of vortex–antivortex pairs on the film surface and Bloch points). We observe three different regimes of motion (stationary, periodic, and turbulent regimes), each of which is realized in a certain range of fields oriented along the easy magnetization axis. It is shown that the experimentally observed dynamic bends of the walls with cross-ties are determined by the type of motion of vortices and antivortices. The velocities of domain walls in different regimes are calculated, and the dynamic configurations of the magnetization and existing dynamic transitions between them are investigated.  相似文献   

11.
We present the measurements of the picosecond magnetization dynamics of Co/Pd multilayer films. The dynamic magnetization properties of sputtered multilayer films were analyzed as a function of Co layer thicknesses and applied bias field. Both the eigenfrequencies of the magnetization precession in the multilayers and the associated Gilbert damping exhibit extreme sensitivity to the magnetic layer thickness on an atomic monolayer scale. The eigenfrequency increases more than threefold when the Co thickness decreases from 7.5 to 2.8 Å, mainly due to the changes in effective saturation magnetization and perpendicular anisotropy constant. A concomitant 2.6-fold increase in the damping of the oscillations is observed and attributed to stronger interface dissipation in thinner Co layers. In addition, we introduce a quasi-1D micromagnetic model in which the multilayer stack is described as a one-dimensional chain of macrospins that represent each Co layer. This model yields excellent agreement with the observed resonance frequencies without any free parameters, while being much simpler and faster than full 3D micromagnetic modeling.  相似文献   

12.
A three-dimensional micromagnetic model with non-uniform grain size distribution has been built up to study the magnetization process in FePt L10 perpendicular media. A 3D model of a single FePt magnetic grain is also set up for comparison. The high magneto-crystalline anisotropy Ku results in a short exchange length lex in FePt nanograins. Therefore a magnetic grain is divided into smaller grids on the order of lex. The simulated perpendicular and longitudinal loops are consistent with experiments, and it is explained why the measured perpendicular Hc is relatively smaller compared with the saturation field of the longitudinal loop in the FePt perpendicular medium.  相似文献   

13.
In this work we present a detailed numerical investigation on the magnetic domain formation and magnetization reversal mechanism in sub-millimeter amorphous wires with negative magnetostriction by means of micromagnetic calculations. The formation of circular magnetic domains surrounding a multidomain axially oriented central nucleus was observed for the micromagnetic model representing the amorphous wire. The magnetization reversal explained by micromagnetic computations for the M-H curve is described in terms of a combined nucleation-propagation−rotational mechanism after the saturated state. Results are interpreted in terms of the effective magnetic anisotropy.  相似文献   

14.
Vortex-like structures of domain walls in triaxial magnetic (110) films are studied within a strict micromagnetic approach and a two-dimensional magnetization distribution approximation by numerically minimizing the total energy functional that includes all main types of interactions, among them the exchange, magnetic-anisotropy, and dipole-dipole (in the continuum approximation) interactions. It is demonstrated that, because of the unusual anisotropy, chains of asymmetric vortex structures can arise in this type of films and that the vortices in the structures increase in number with the film thickness.  相似文献   

15.
The possible types of transition structures with a three-dimensional magnetization distribution over regions in the vortex asymmetric domain walls that exist in magnetically uniaxial soft magnetic films with in-plane anisotropy are studied by computer simulation in terms of a micromagnetic approach. It is shown that the possible structure types include both the type of vertical Bloch lines that was discussed earlier in other works and new types, namely, singular (Bloch) points and clusters consisting of vertical Bloch lines and Bloch points. The spatial configurations of the transition structures are calculated and their topological properties are found. The numerical simulation of the dynamics of closely spaced substructure regions reveals various scenarios of their interaction, including annihilation accompanied by energy release and the excitation of nonlinear waves.  相似文献   

16.
We investigate the dependence of the switching process on the perpendicular magnetic anisotropy(PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions(P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.  相似文献   

17.
The nonlinear dynamic behavior of vortexlike domain walls in magnetic uniaxial films having an in-plane anisotropy was investigated within a rigorous micromagnetic approach in the framework of a two-dimensional magnetization distribution by numerically solving the Landau–Lifshitz equations (with the Gilbert damping parameter) with allowance for all the main interactions, including the dipole–dipole one. The studies were carried out on magnetic soft films with an anisotropy axis lying in their plane in a dc magnetic field parallel to an easy axis and a pulsed magnetic field normal to it. New possibilities for controlling the nonlinear dynamic rearrangement of the internal structure of domain walls and their velocities in fields both above and below the critical field are established. The wall motion in the field above the critical one is nonstationary.  相似文献   

18.
Krone  P.  Makarov  D.  Cattoni  A.  Faini  G.  Haghiri-Gosnet  A.-M.  Knittel  I.  Hartmann  U.  Schrefl  T.  Albrecht  M. 《Journal of nanoparticle research》2011,13(11):5587-5593
The magnetization reversal behavior of a dot array consisting of Co/Pt multilayers with perpendicular magnetic anisotropy was investigated. The size of the dots was varied from 200 nm down to 40 nm, while keeping the filling factor constant at about 0.16. The structural properties were determined by scanning electron microscopy, whereas the magnetic investigation was performed using SQUID and MFM techniques. It was observed that the dot size has a severe impact on the magnetization reversal mechanism where only the smallest dots with a size of 40 nm are found to be in a magnetic single-domain state. Moreover, the patterning process leads to a degradation of the multilayer, leading to a reduction of the switching field and an increase of the switching field distribution with decreasing dot size. In addition, micromagnetic simulations were performed to understand the magnetization reversal mechanism in more detail.  相似文献   

19.
The spin configurations of two dimensional ferromagnetic/antiferromagnetic system were investigated using model calculations and Monte-Carlo simulation methods. The lowest energy state was obtained under various coupling conditions to investigate the role of interfacial interaction on anisotropy. We found that the total ferromagnetic layer anisotropy is contributed not only from its own crystalline anisotropy but also from the antiferromagnetic layer spin flop effect. The overall ferromagnetic layer effective anisotropy is calculated as a function of the exchange energy of antiferromagnetic layer and the interfacial interaction energy. If the effective anisotropy from the spin flop effect is comparable with the crystalline anisotropy, the asymmetric spin configuration is generated. In this configuration, the magnetization direction of the ferromagnetic layer is neither perpendicular nor parallel to the antiferromagnetic spin direction. Temperature effect on the perpendicular-to-collinear coupling transition was also investigated using Monte-Carlo simulation, and the relationship between the effective anisotropy and the temperature was obtained.  相似文献   

20.
Within the framework of the micromagnetic theory developed by Kronmüller and Ulner we have calculated the influence of spacially random dipolar, magnetocrystalline, magnetostrictive and exchange fluctuations on the law of approach to ferromagnetic saturation of amorphous ferromagnetic materials. The effect of fluctuations of dipolar and exchange interactions turns out to be negligibly small in most materials. The magnetocrystalline and magnetostrictive fluctuations, however, may give rise to a 1/?H-term in the saturation magnetization in materials (such as TbFe2) with huge local magnetocrystalline fields. In materials with non-vanishing volume averages of the magnetocrystalline energy or the magnetostriction the H-dependence of the saturation magnetization reflects the nature of the strained arrangement of atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号