首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The dicationic Ir(III) complex [IrMe(CO)(dppe)(DIB)](BAr4f)2 where dppe=bis(diphenylphosphino)ethane and DIB=o-diiodobenzene possesses adjacent labile sites and is found to be a very active catalyst for the Nazarov cyclization. 31P NMR spectroscopy provides evidence for substrate-catalyst binding by chelation, and this is found to be the resting state of the system during catalysis. The efficiency of the cyclization is attributed to the electrophilicity of the Ir(III) complex and substrate activation via O,O′-chelation which employs two substrate carbonyl groups or one carbonyl and an ether function, and encourages the s-trans/s-trans conformation required for cyclization. When two point binding occurs through an oxygen atom and one of the vinyl groups, the s-trans/s-trans conformation is not achieved, and cyclization is not observed. In one case, monodentate binding of substrate occurs, and the rate of cyclization is significantly slower than when O,O′-chelation is possible. The viability of O,O′-chelation is shown by the crystal structure determination of a model substrate-catalyst complex.  相似文献   

2.
Three different reaction procedures for the coordination of N-n-butyl-N'-(2-pyridylmethyl)imidazolium salt have produced new N-heterocyclic complexes of Rh and Ir. The direct reaction of the imidazolium salt with [IrCl(cod)](2) provides a NHC-Ir(III)-H complex, while transmetalation from a silver-NHC complex and deprotonation with NEt(3) give new NHC complexes of M(I) and M(III) when reacting with [MCl(cod)](2) or [MCl(coe)(2)](2) (M = Rh, Ir). The crystal structures of the biscarbene Rh(III) and Ir(III) complexes are described. The catalytic properties of the compounds obtained have been tested in the hydrosilylation of acetylenes, the cyclization of acetylenic carboxylic acids, and hydrogen transfer to ketones.  相似文献   

3.
The complex [[Ir(mu-Pz)(CNBu(t))(2)](2)] (1) undergoes double protonation reactions with HCl and with HO(2)CCF(3) to give the neutral dihydride complexes [[Ir(mu-Pz)(H)(X)(CNBu(t))(2)](2)] (X = Cl, eta(1)-O(2)CCF(3)), in which the hydride ligands were located trans to the X groups and in the boat of the complexes, both in the solid state and in solution. The complex [[Ir(mu-Pz)(H)(Cl)(CNBu(t))(2)](2)] evolves in solution to the cationic complex [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]Cl. Removal of the anionic chloride by reaction with methyltriflate allows the isolation of the triflate salt [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]OTf. This complex undergoes a metathesis reaction of hydride by chloride in CDCl(3) under exposure to the direct sunlight to give the complex [[Ir(mu-Pz)(Cl)(CNBu(t))(2)](2)(mu-Cl)]OTf. Protonation of both metal centers in [[Ir(mu-Pz)(CO)(2)](2)] with HCl occurs at low temperature, but eventually the mononuclear compound [IrCl(HPz)(CO)(2)] is isolated. The related complex [[Ir(mu-Pz)(CO)(P[OPh](3))](2)] reacts with HCl and with HO(2)CCF(3) to give the neutral Ir(III)/Ir(III) complexes [[Ir(mu-Pz)(H)(X)(CO)(P[OPh](3))](2)], respectively. Both reactions were found to take place stepwise, allowing the isolation of the intermediate monohydrides. They are of different natures, i.e., the metal-metal-bonded Ir(II)/Ir(II) compound [(P[OPh](3))(CO)(Cl)Ir(mu-Pz)(2)Ir(H)(CO)(P[OPh](3))] and the mixed-valence Ir(I)/Ir(III) complex [(P[OPh](3))(CO)Ir(mu-Pz)(2)Ir(H)(eta(1)-O(2)CCF(3))(CO)(P[OPh](3))].  相似文献   

4.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

5.
The reactivity of the paramagnetic iridium(II) complex [Ir(II)(ethene)(Me(3)tpa)](2+) (1) (Me(3)tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective C--C bond formation, most likely through radical coupling of the Ir-carbenoid radical species [Ir(III){CH(.)(COOEt)}(MeCN)(Me(3)tpa)](2+) (7) and (the MeCN adduct of) 1, to give the tetracationic dinuclear complex [(MeCN)(Me(3)tpa)Ir(III){CH(COOEt)CH(2)CH(2)}Ir(III)(MeCN)(Me(3)tpa)](2+) (4). The analogous reaction with TMSDM leads to the mononuclear dicationic species [Ir(III){CH(2)(SiMe(3))}(MeCN)(Me(3)tpa)](2+) (11). This reaction probably involves a hydrogen-atom abstraction from TMSDM by the intermediate Ir-carbenoid radical species [Ir(III){CH(.)(SiMe(3))}(MeCN)(Me(3)tpa)](2+) (10). DFT calculations support pathways proceeding via these Ir-carbenoid radicals. The carbenoid-radical species are actually carbon-centered ligand radicals, with an electronic structure best described as one-electron-reduced Fischer-type carbenes. To our knowledge, this paper represents the first reactivity study of a mononuclear Ir(II) species towards diazo compounds.  相似文献   

6.
Liu Y  Li M  Zhao Q  Wu H  Huang K  Li F 《Inorganic chemistry》2011,50(13):5969-5977
Phosphorescent iridium(III) complexes have been attracting increasing attention in applications as luminescent chemosensors. However, no instance of an iridium(III) complex being used as a molecular logic gate has hitherto been reported. In the present study, two iridium(III) complexes, [Ir(ppy)(2)(PBT)] and [Ir(ppy)(2)(PBO)], have been synthesized (PBT, 2-(2-Hydroxyphenyl)-benzothiazole; PBO, 2-(2-hydroxyphenyl)-benzoxazole), and their chemical structures have been characterized by single-crystal X-ray analysis. Theoretical calculations and detailed studies of the photophysical and electrochemical properties of these two complexes have shown that the N^O ligands dominate their luminescence emission properties. Moreover, [Ir(ppy)(2)(PBT)], containing a sulfur atom in the N^O ligand, can serve as a highly selective chemodosimeter for Hg(2+) with ratiometric and naked-eye detection, which is associated with the dissociation of the N^O ligand PBT from the complex. Furthermore, complex [Ir(ppy)(2)(PBT)] has been further developed as an AND and INHIBIT logic gate with Hg(2+) and histidine as inputs.  相似文献   

7.
A recently developed combinatorial method utilizing angular dependence of evaporation rate was used to create compositional spread thin film libraries of Tris(2-pyridin-2-yl-indolizino[3,4,5-ab] isoindole-C(1), N('))iridium(III) [Ir(pin)(3)] and 4,4(')-N,N(')-dicarbazol-biphenyl (CBP) composite, with the molar fraction of Ir(pin)(3) complex varying in the 0.0003Ir(pin)(3) energy transfer proceeds by the Forster mechanism with the Forster radius of 30 A. The CBPxIr(pin)(3) composite has the highest photoluminescence quantum efficiency approximately 0.95, for chi(Ir(pin)(3) )=0.03 and is characterized by a structured green emission (lambda(max)=538 nm) originating from the ligand-centered (pi-pi(*))(3) state of the Ir(pin)(3) complex. On the contrary, the PL spectra of Ir(pin)(3) bulk are characterized by a weak red emission (lambda(max)=673 nm) attributed to the lowest metal-to-ligand charge transfer state. A statistical analysis based on a binomial distribution indicates that the emission from the (pi-pi(*))(3) state is quenched in Ir(pin)(3) molecules that are in a direct contact with each other.  相似文献   

8.
Wu Y  Jing H  Dong Z  Zhao Q  Wu H  Li F 《Inorganic chemistry》2011,50(16):7412-7420
In this work, a neutral iridium(III) complex [Ir(bt)(2)(acac)] (Hbt = 2-phenylbenzothiazole; Hacac = acetylacetone) has been realized as a Hg(II)-selective sensor through UV-vis absorption, phosphorescence emission, and electrochemical measurements and was further developed as a phosphorescent agent for monitoring intracellular Hg(II). Upon addition of Hg(II) to a solution of [Ir(bt)(2)(acac)], a noticeable spectral blue shift in both absorption and phosphorescent emission bands was measured. (1)H NMR spectroscopic titration experiments indicated that coordination of Hg(II) to the complex induces fast decomposition of [Ir(bt)(2)(acac)] to form a new complex, which is responsible for the significant variations in optical and electrochemical signals. Importantly, cell imaging experiments have shown that [Ir(bt)(2)(acac)] is membrane permeable and can be used to monitor the changes in Hg(II) levels within cells in a ratiometric phosphorescence mode.  相似文献   

9.
Water adds to the two-electron mixed-valence Ir(0,II)(2) core of Ir(2)(tfepma)(3)Cl(2)(tfepma = MeN[P(OCH(2)CF(3))(2)](2)) to cleanly generate an Ir(I,III)(2) hydride. Dehydrohalogenation across the Ir-Ir bond returns the complex to an Ir(0,II)(2) species.  相似文献   

10.
Synthetic control of the mutual arrangement of the cyclometalated ligands (C^N) in Ir(III) dimers, [Ir(C^N)(2)Cl](2), and cationic bis-cyclometalated Ir(III) complexes, [Ir(C^N)(2)(L^L)](+) (L^L = neutral ligand), is described for the first time. Using 1-benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole (HdfptrBz) as a cyclometalating ligand, two different Ir(III) dimers, [Ir(dfptrBz)(2)Cl](2), are synthesized depending on the reaction conditions. At 80 °C, the dimer with an unusual mutual cis-C,C and cis-N,N configuration of the C^N ligands is isolated. In contrast, at higher temperature (140 °C), the geometrical isomer with the common cis-C,C and trans-N,N arrangement of the C^N ligand is obtained. In both cases, an asymmetric bridge, formed by a chloro ligand and two adjacent nitrogens of the triazole ring of one of the cyclometalated ligands, is observed. The dimers are cleaved in coordinating solvents to give the solvento complexes [Ir(dfptrBz)(2)Cl(S)] (S = DMSO or acetonitrile), which maintain the C^N arrangement of the parent dimers. Controlling the C^N ligand arrangement in the dimers allows for the preparation of the first example of geometrical isomers of a cationic bis-cyclometalated Ir(III) complex. Thus, N,N-trans-[Ir(dfptrBz)(2)(dmbpy)](+) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), with cis-C,C and trans-N,N arrangement of the C^N ligands, as well as N,N-cis-[Ir(dfptrBz)(2)(dmbpy)](+), with cis-C,C and cis-N,N C^N ligand orientation, are synthesized and characterized. Interestingly, both isomers show significantly different photophysical and electroluminescent properties, depending on the mutual arrangement of the C^N ligands. Furthermore, quantum chemical calculations give insight into the observed photophysical experimental data.  相似文献   

11.
Reactions of the iridium(III) nitrosyl complex [Ir(NO)Cl2(PPh3)2] (1) with hydrosulfide and arenethiolate anions afforded the square-pyramidal iridium(III) complex [Ir(NO)(SH)2(PPh3)2] (2) with a bent nitrosyl ligand and a series of the square-planar iridium(I) complexes [Ir(NO)(SAr)2(PPh3)] (3a, Ar = C6H2Me3-2,4,6 (Mes); 3b, Ar = C6H3Me2-2,6 (Xy); 3c, Ar = C6H2Pri3-2,4,6) containing a linear nitrosyl ligand, respectively. Complex 1 also reacted with alkanethiolate anions or alkanethiols to give the thiolato-bridged diiridium complexes [Ir(NO)(mu-SPri)(SPri)(PPh3)]2 (4) and [Ir(NO)(mu-SBut)(PPh3)]2 (5). Complex 4 contains two square-pyramidal iridium(III) centers with a bent nitrosyl ligand, whereas 5 contains two tetrahedral iridium(0) centers with a linear nitrosyl ligand and has an Ir-Ir bond. Upon treatment with benzoyl chloride, 3a and 3b were converted into the (diaryl disulfide)- and thiolato-bridged dichlorodiiridium(III) complexes [[IrCl(mu-SC6HnMe4-nCH2)(PPh3)]2(mu-ArSSAr)] (6a, Ar = Mes, n = 2; 6b, Ar = Xy, n = 3) accompanied by a loss of the nitrosyl ligands and cleavage of a C-H bond in an ortho methyl group of the thiolato ligands. Similar treatment of 4 gave the dichlorodiiridium complex [Ir(NO)(PPh3)(mu-SPri)3IrCl2(PPh3)] (7), which has an octahedral dichloroiridium(III) center and a distorted trigonal-bipyramidal Ir(I) atom with a linear nitrosyl ligand. The detailed structures of 3a, 4, 5, 6a, and 7 have been determined by X-ray crystallography.  相似文献   

12.
A tris(heteroleptic) phenanthrenequinone diimine (phi) complex of Ir(III), Ir(bpy)(phen)(phi)(3+), was synthesized through the stepwise introduction of three different bidentate ligands, and the Lambda- and Delta-enantiomers were resolved and characterized by CD spectroscopy. Like other phi complexes, this tris(heteroleptic) iridium complex binds avidly to DNA by intercalation. Electrochemical studies show that Ir(bpy)(phen)(phi)(3+) undergoes a reversible one-electron reduction at E(0) = -0.025 V in 0.1 M TBAH/DMF (versus Ag/AgCl), and spectroelectrochemical studies indicate that this reduction is centered on the phi ligand. The EPR spectrum of electrochemically generated Ir(bpy)(phen)(phi)(2+) is consistent with a phi-based radical. The electrochemistry of Ir(bpy)(phen)(phi)(3+) was also probed at a DNA-modified electrode, where a DNA binding affinity of K = 1.1 x 10(6) M(-1) was measured. In contrast to Ir(bpy)(phen)(phi)(3+) free in solution, the complex bound to DNA undergoes a concerted two-electron reduction, to form a diradical species. On the basis of UV-visible and EPR spectroscopies, it is found that disproportionation of electrochemically generated Ir(bpy)(phen)(phi)(2+) occurs upon DNA binding. These results underscore the rich redox chemistry associated with metallointercalators bound to DNA.  相似文献   

13.
A multisignaling chemosensor for Hg(2+) based on the iridium(III) complex Ir(thq)(2)(acac) was realized through UV-Vis absorption, phosphorescent emission and electrochemical measurements. Upon addition of Hg(2+), an obvious blue-shift in absorption spectra and a strong decrease of emission intensity were measured for Ir(thq)(2)(acac), which could be observed by the naked eye. Hg(2+) is coordinated to Ir(thq)(2)(acac), forming a 1 : 1 complex. Because Hg(2+) is a thiophilic metal ion, the interaction between Hg(2+) and the sulfur atom of cyclometalated ligands is responsible for the significant variations in optical and electrochemical signals.  相似文献   

14.
Iridium-catalyzed borylation of benzene with diboron was theoretically investigated with the DFT method, where an iridium(I) boryl complex, Ir(Beg)(NN) 1, and an iridium(III) tris(boryl) complex, Ir(Beg)(3)(NN) 14, (eg (ethyleneglycolato) = -OCH(2)CH(2)O-, NN = HN=CHCH=NH (diim) or 2,2'-bipyridine (bpy)) were adopted as models of active species and B(2)(eg)(2) was adopted as a model of bis(pinacolato)diboron (pinacolato = -OCMe(2)CMe(2)O-). Oxidative addition of a benzene C-H sigma-bond to 1 takes place with an activation barrier (E(a)) of 11.2 kcal/mol, followed by reductive elimination of phenylborane, Ph-Beg, from Ir(Beg)(H)(Ph)(diim) with an activation barrier of 15.6 kcal/mol. Though the oxidative addition and the reductive elimination occur with moderate activation barriers, B(2)(eg)(2) much more easily reacts with 1 to afford 14 than does benzene, of which the activation barrier is very small (2.9 kcal/mol). Oxidative addition of the benzene C-H sigma-bond to 14 occurs with a moderate activation barrier of 24.2 kcal/mol to afford an unusual seven-coordinate iridium(V) complex, Ir(H)(Ph)(Beg)(3)(bpy) 16. From this complex, phenylborane Ph-Beg is produced through the reductive elimination with concomitant formation of IrH(Beg)(2)(bpy) 17, where the activation barrier is 4.9 kcal/mol. Complex 17 further reacts with diboron to form Ir(H)(Beg)(4)(bpy) (E(a) = 8.0 kcal/mol), followed by the reductive elimination of borane H-Beg (E(a) = 2.6 kcal/mol) to regenerate Ir(Beg)(3)(bpy), when diboron exists in excess in the reaction solution. After consumption of diboron, IrH(Beg)(2)(bpy) reacts with borane, H-Beg, to form Ir(H)(2)(Beg)(3) (E(a) = 21.3 kcal/mol) followed by the reductive elimination of H(2), to regenerate Ir(Beg)(3)(bpy) with concomitant formation of H(2). Formation of the iridium(III) tris(boryl) complex 14 from IrCl(diim) and diboron was also theoretically investigated; IrCl(diim) undergoes two steps of oxidative addition of diboron to afford a seven-coordinate iridium(V) complex, IrCl(Beg)(4)(NN), from which the reductive elimination of Cl-Beg takes place easily to afford 14. From these results, it should be clearly concluded that the iridium(III) tris(boryl) complex is an active species and an unusual iridium(V) species is involved as a key intermediate in the reaction. Detailed discussion is presented on the full catalytic cycle and the importance of a seven-coordinate iridium(V) intermediate.  相似文献   

15.
Unusual reactions are reported, in which the aromatic PNP ligand (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) acts in concert with the metal in the activation of H2 and benzene, via facile aromatization/dearomatization processes of the ligand. A new, dearomatized electron-rich (PNP*)Ir(I) complex 2 (PNP* = deprotonated PNP) activates benzene to form the aromatic (PNP)Ir(I)Ph 4, which upon treatment with CO undergoes a surprising oxidation process to form (PNP*)Ir(III)(H)CO 6, involving proton migration from the ligand "arm" to the metal, with concomitant dearomatization. 4 undergoes stereoselective activation of H2 to exclusively form the trans-dihydride 7, rather than the expected cis-dihydride complex. Our evidence, including D-labeling, suggests the possibility that the Ir(I)-Ph complex is transformed to the dearomatized Ir(III)(Ph)(H) (independently prepared at low temperature), which may be the actual intermediate undergoing H2 activation.  相似文献   

16.
Reaction of the organometallic aqua ion [Cp*Ir(H(2)O)(3)](2+) with tert-butyl(trimethylsilyl)amine in acetone yielded a novel trinuclear (μ(3)-oxido)(μ(3)-imido)pentamethylcyclopentadienyliridium(III) complex, [(Cp*Ir)(3)(O)(N(t)Bu)](2+). Single crystal structure analyses show the complex can be isolated both in the double salt ((t)BuNH(3))[(Cp*Ir)(3)(O)(N(t)Bu)](CF(3)SO(3))(3) (1) and in the simple triflate [(Cp*Ir)(3)(O)(N(t)Bu)](CF(3)SO(3))(2) (2). The double salt is stabilized by hydrogen bonding between the tert-butylammonium ion and the three triflate anions. It is the first time that a trinuclear (μ(3)-oxido)(μ(3)-imido) transition metal complex has been structurally characterized.  相似文献   

17.
The reactions of Me(2)NH·BH(3) with cationic Rh(III) and Ir(III) complexes have been shown to generate the 18-electron aminoborane adduct [Ir(IMes)(2)(H)(2){κ(2)-H(2)BNMe(2))](+) and the remarkable 14-electron aminoboryl complex [Rh(IMes)(2)(H)-{B(H)NMe(2))](+). Neutron diffraction studies have been used for the first time to define H-atom locations in metal complexes of this type formed under catalytic conditions.  相似文献   

18.
One-electron oxidation of [(Me(n)tpa)Ir(I)(ethene)]+ complexes (Me(3)tpa = N,N,N-tri(6-methyl-2-pyridylmethyl)amine; Me(2)tpa = N-(2-pyridylmethyl)-N,N,-di[(6-methyl-2-pyridyl)methyl]-amine) results in relatively stable, five-coordinate Ir(II)-olefin species [(Me(n)tpa)Ir(II)(ethene)](2+) (1(2+): n = 3; 2(2+): n = 2). These contain a "vacant site" at iridium and a "non-innocent" ethene fragment, allowing radical type addition reactions at both the metal and the ethene ligand. The balance between metal- and ligand-centered radical behavior is influenced by the donor capacity of the solvent. In weakly coordinating solvents, 1(2+) and 2(2+) behave as moderately reactive metallo-radicals. Radical coupling of 1(2+) with NO in acetone occurs at the metal, resulting in dissociation of ethene and formation of the stable nitrosyl complex [(Me(3)tpa)Ir(NO)](2+) (6(2+)). In the coordinating solvent MeCN, 1(2+) generates more reactive radicals; [(Me(3)tpa)Ir(MeCN)(ethene)](2+) (9(2+)) by MeCN coordination, and [(Me(3)tpa)Ir(II)(MeCN)](2+) (10(2+)) by substitution of MeCN for ethene. Complex 10(2+) is a metallo-radical, like 1(2+) but more reactive. DFT calculations indicate that 9(2+) is intermediate between the slipped-olefin Ir(II)(CH(2)=CH(2)) and ethyl radical Ir(III)-CH(2)-CH(2). resonance structures, of which the latter prevails. The ethyl radical character of 9(2+) allows radical type addition reactions at the ethene ligand. Complex 2(2+) behaves similarly in MeCN. In the absence of further reagents, 1(2+) and 2(2+) convert to the ethylene bridged species [(Me(n)tpa)(MeCN)Ir(III)(mu(2)-C(2)H(4))Ir(III)(MeCN)(Me(3)tpa)](4+) (n = 3: 3(4+); n = 2: 4(4+)) in MeCN. In the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxo), formation of 3(4+) from 1(2+) in MeCN is completely suppressed and only [(Me(3)tpa)Ir(III)(TEMPO(-))(MeCN)](2+) (7(2+)) is formed. This is thought to proceed via radical coupling of TEMPO at the metal center of 10(2+). In the presence of water, hydrolysis of the coordinated acetonitrile fragment of 7(2+) results in the acetamido complex [(Me(3)tpa)Ir(III)(NHC(O)CH(3)))(TEMPOH)](2+) (8(2+)).  相似文献   

19.
Reaction of 2-(arylazo)phenols with [Ir(PPh(3))(3)Cl] in refluxing ethanol in the presence of a base (NEt(3)) affords complexes of three different types, viz. [Ir(PPh(3))(2)(NO-R)(H)Cl] (R = OCH(3), CH(3), H, Cl and NO(2)), [Ir(PPh(3))(2)(NO-R)(H)(2)] and [Ir(PPh(3))(2)(CNO-R)(H)]. Structures of the [Ir(PPh(3))(2)(NO-Cl)(H)Cl], [Ir(PPh(3))(2)(NO-Cl)(H)(2)] and [Ir(PPh(3))(2)(CNO-Cl)(H)] complexes have been determined by X-ray crystallography. In the [Ir(PPh(3))(2)(NO-R)(H)Cl] and [Ir(PPh(3))(2)(NO-R)(H)(2)] complexes, the 2-(arylazo)phenolate ligands are coordinated to the metal center as monoanionic bidentate N,O-donors, whereas in the [Ir(PPh(3))(2)(CNO-R)(H)] complexes, they are coordinated to iridium as dianionic tridentate C,N,O-donors. In all three products formed in ethanol, the two PPh(3) ligands are trans. Reaction of 2-(arylazo)phenols with [Ir(PPh(3))(3)Cl] in refluxing toluene in the presence of NEt(3) affords complexes of two types, viz. [Ir(PPh(3))(2)(CNO-R)(H)] and [Ir(PPh(3))(2)(CNO-R)Cl]. Structure of the [Ir(PPh(3))(2)(CNO-Cl)Cl] complex has been determined by X-ray crystallography, and the 2-(arylazo)phenolate ligand is coordinated to the metal center as a dianionic tridentate C,N,O-donor and the two PPh(3) ligands are cis. All of the iridium(III) complexes show intense MLCT transitions in the visible region. Cyclic voltammetry shows an Ir(III)-Ir(IV) oxidation on the positive side of SCE and an Ir(III)-Ir(II) reduction on the negative side for all of the products.  相似文献   

20.
Seven useful mixed-ligand complexes in the form of [Ir(terpy)(L)Cl]2+ were prepared and their spectroscopic and electrochemical properties were investigated. The ligands used were terpy = 2,2':6',2'-terpyridine, L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 5-phenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,3-bis(2-pyridyl)pyrazine. Synthetic methods were developed by a sequential ligand-replacement which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the terpyridine ligand for [Ir(terpy)(bpy)Cl]2+, [Ir(terpy)(dmbpy)Cl]2+, [Ir(terpy)(dpbpy)Cl]2+, [Ir(terpy)(phen)Cl]2+, [Ir(terpy)(dpphen)Cl]2+ and [Ir(terpy)(phphen)Cl]2+. On the other hand, the LUMO in the [Ir(terpy)(bppz)Cl]2+ complex is localized on the pi-system of the bppz ligand, whereas the HOMOs in the iridium complexes are localized on the terpyridine ligand. It was found that Ir(terpy)(L)Cl emits in a fluid solution at room temperature. The ancillary ligands, such as terpy and bpy, have been explored to extend the lifetime of the triplet 3(pi-pi') excited states of Ir(III) terpyridine complexes. Ir(III) terpyridine units with an electron donor (dmbpy) or electron acceptor substituents (terpy, dpbpy, phphen, dpphen and bppz) are found to decrease the energy of the 3LC states for use as photosensitizer molecular components in supramolecular devices. The spectroscopic and electrochemical details are also reported herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号