首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The thermolysis reactions of the tricyanomethyl compounds 10a-c were studied in solution. 2,2-Dicyano-3-methyl-3-phenylbutyronitrile ( 10a ) and 2,2-dicyano-3-methyl-3-(4-nitrophenyl)butyronitrile ( 10b ) decomposed heterolytically into carbenium ions and (CN)3C anions, while 9-methyl-9-(tricyanomethyl)fluorene ( 10c ) underwent about 11% homolytic C-C bond cleavage into 9-methyl-9-fluorenyl- and tricyanomethyl radicals. The rates of the homolysis were determined by a radical scavenger procedure under conditions of pseudozero order kinetics. From the temperature effect on the rate constants the activation parameters were determined [ΔH ( 10c ) = 155· 2 kJ mol−1, ΔS ( 10c ) = 58· 5 J mol−1 K−1]. Standard enthalpies of formation ΔH (g) were determined for 2,2-dicyanopropionitrile ( 2 ) (422.45 kJ mol−1), 2,2-dicyanohexanenitrile ( 3 ) (349.74 kJ mol−1), 2,2-dicyano-3-phenylpropionitrile ( 4 ) (540.75 kJ mol−1), 2-butyl-2-methylhexanentrile ( 5 ) (-133.20 kJ mol−1), 2,2-dimethylpentanenitrile ( 6 ) (-45.78 kJ mol−1), and 2-methylbutyronitrile ( 7 ) (2.44 kJ mol−1) from the enthalpies of combustion and enthalpies of sublimation/vaporization. From these data and known Δ (g) values for alkanenitriles and -dinitriles, thermochemical increments for ΔH (g) were derived for alkyl groups with one, two, or three cyano groups attached. The comparison of these increments with those of alkanes reveals a strong geminal destabilization, which is interpreted by dipolar repulsions between the cyano groups. - From ΔH (g) of 10c and ΔH of its homolytic decomposition the radical stabilization enthalpy for the tricyanomethyl radical 1 RSE ( 1 ) = -18 kJ mol−1 was determined. Thus, 1 is destabilized, in comparison with the RSEs of tertiary α-cyanalkyl (23 kJ mol−1) and α,α-dicyanoalkyl (27 kJ mol−1) radicals, which were recalculated from bond homolysis measurements[4] and the new thermochemical data. This change of RSE on increasing the number of α-cyano groups is discussed as the result of the additive contributions by resonance stabilization and increasing destabilization by dipolar repulsion. The amount of the dipolar energies was estimated by molecular mechanics (MM2).  相似文献   

2.
新型胺基壳聚糖树脂的合成及其对胆红素吸附性能的研究   总被引:8,自引:0,他引:8  
以壳聚糖为原料,经羟丙基氯化、胺基化,制备了一种新型胺基壳聚糖树脂,研究了该树脂对胆红素的吸附性能。结果表明:胺基壳聚糖树脂的胺基含量比壳聚糖高,该树脂对游离胆红素的吸附在3h基本达到平衡,吸附量随着胺基含量增加而增加,树脂的吸附性能受温度、离子强度影响。胺基壳聚糖树脂对血清白蛋白结合胆红素的吸附量大于壳聚糖,但低于对游离胆红素的吸附。  相似文献   

3.
Under conditions of continuous ozone gas application and constant ultrasonic radiation (UR), chitosan was effectively degraded. The existence of a synergetic effect of ozone and ultrasonic radiation on the degradation of chitosan was demonstrated by means of determination of viscosity-average molecular weight. The efficiency of the ozone and ultrasonic radiation treatment compared with acid hydrolysis on degradation of chitosan was investigated. In addition, the structure of the degraded chitosan was characterized by FT-IR and 13C NMR spectral analyses. The whole initial chitosan's monomer structure still existed in the resulting degraded chitosan with different low molecular weight. The pilot study of the chemical stability of the degraded chitosan was carried out. There was no significant change of the total degree of deacetylation (DD) of degraded chitosan compared with the initial chitosan. The combined O3/UR technique is promisingly suitable for scale-up manufacture of low-molecular-weight chitosan.  相似文献   

4.
本文通过邻苯二甲酸酐保护壳聚糖的2-NH2,在壳聚糖的6-OH上引入聚乙二醇单甲醚。再经脱保护基团、2-NH2挂接叶酸,合成了叶酸接枝的聚乙二醇化壳聚糖。目标物用FT-IR,1HNMR,UV-Vis进行了表征。  相似文献   

5.
以蘑菇为原料提取甲壳素,并制备壳聚糖。通过滴定法测定由蘑菇制备的壳聚糖的脱乙酰度,用乌氏黏度计测定了比浓黏度,并研究了制备工艺中加热温度和碱处理时间对它们的影响,计算了其产率;对以蘑菇为原料制取的甲壳素、壳聚糖的结构通过红外光谱进行表征。结果表明,在碱处理时间为24h、加热温度为100℃的条件下有较高的脱乙酰度;比浓黏度随着碱处理时间的延长、加热温度的增加都呈下降的趋势;壳聚糖产率为1.69%。制取的甲壳素、壳聚糖的红外光谱图表明,甲壳素在蘑菇中主要是以α-构型存在,α-构型甲壳素在浓碱中经过脱乙酰后生成β-构型的壳聚糖。  相似文献   

6.
壳聚糖在水溶液中的辐射降解反应   总被引:1,自引:0,他引:1  
研究了壳聚糖在CH3COOH/NaCl缓冲溶液均相体系下的辐射降解反应,给出了H2O2、异丙醇、pH、样品初始分子量等因素对壳聚糖降解的影响,探讨了实验条件下溶液中不同自由基对壳聚糖降解的作用,并对辐照前后壳聚糖的结构进行了表征.结果表明,酸性条件下,壳聚糖的降解主要由.H和.OH自由基共同作用引起,加入H2O2或者通入N2O都能够略微提高.OH自由基浓度,对壳聚糖的降解有促进作用.加入异丙醇后,由于同时降低了.H和.OH自由基浓度,导致壳聚糖降解缓慢.当溶液的pH接近中性后,对壳聚糖的降解起主要作用的为.OH自由基,加入H2O2或者通入N2O都会增加.OH自由基的浓度,从而明显提高壳聚糖的降解速率.此外,研究发现低分子量的壳聚糖具有较快的降解速率.样品的UV、FTIR分析表明,辐照后除在壳聚糖分子链端生成羰基外,壳聚糖主链结构未见变化,脱乙酰度也没有显著改变,显示出辐射降解是一种有效的控制壳聚糖分子量方法.  相似文献   

7.
This study focused on the structural, optical and electrical features of chitosan organic layer obtained by spin coating technique both on glass and n-Si substrates. XRD results indicated that chitosan has polycrystalline orthorhombic nature. While optical transmittance spectrum of the chitosan organic layer exhibited an increasing tendency in the visible range, band gap energy value was calculated as 4.23 eV for chitosan by UV–Vis spectrometer. Electrical performance of organic chitosan layer in a Schottky device was studied by fabricating of Au/n-Si and Au/chitosan/n-Si devices. The suitability of Au/chitosan/n-Si sandwich devices in optoelectronic applications were tested under dark and illumination conditions. The Au/chitosan/n-Si sandwich device exhibits good photodiode characteristics. Furthermore, the effect of X-ray radiation doses on the electrical properties of the Au/chitosan/n-Si sandwich device was also investigated. In order to get information about electrical characteristics as a function of X-ray radiation doses, Au/chitosan/n-Si sandwich device was exposed to X-ray radiation in same exposure time and various doses. The results highlighted that the performance of the device with chitosan organic interface layer deteriorated with increasing radiation dose. In addition, the transportation mechanism of chitosan based Schottky device was discussed in details.  相似文献   

8.
IntroductionMagnetite (Fe3O4) is widespread in the environ-ment although it is thermodynamically unstable with re-spect to hematite(α-Fe2O3) in the presence of oxygen.It has been widely used for targeted delivery ofdrugs[1], in MRI reagents[2], hyperther…  相似文献   

9.
改性壳聚糖树脂对利尿剂的吸附性能   总被引:5,自引:0,他引:5  
用琥珀酸酐、苯甲酸酐、聚乙烯亚胺和 3 氯 2 羟丙基三甲基氯化铵对壳聚糖进行改性 ,分别在其氨基上引入羧基、苯环、多氨基和季胺基 ,并利用红外谱图对于改性后的壳聚糖的结构进行了分析 .应用相转移法制备了 4种改性壳聚糖的微球 ,实验研究了这 4种微球对 9种不同利尿剂的吸附性能 .结果表明 ,由于Lewis酸碱相互作用 ,引入羧基后的壳聚糖树脂对 3种碱性利尿剂的吸附量有了 15 %~ 36 %的提高 ,而引入多氨基的壳聚糖树脂对四种酸性利尿剂的吸附量分别提高了 4 8 5 %~ 2 0 9% ;由于苯环和利尿剂的憎水性基团的相互作用 ,引入苯环后的壳聚糖树脂对所有的利尿剂的吸附量都有所提高 ,其幅度为 15 %~ 6 1% ;因为季胺基团和羧基之间发生的离子交换作用 ,引入季胺基后的树脂对具有羧基的利尿剂吸附量有显著的提高 ,尤其对布美它尼的吸附量提高了 2倍以上 .  相似文献   

10.
通过壳聚糖氧化裂解,制备了分子量为8000的水溶性壳聚糖,并通过烷基化反应合成了二乙氨乙基壳聚糖、二甲氨基(1-甲基)乙基壳聚糖及二乙基甲基铵乙基壳聚糖.在体外测定了水溶性壳聚糖及其衍生物对胆酸盐(牛磺胆酸钠和甘氨胆酸钠)的结合能力及其影响因素.结果表明,水溶性壳聚糖结合胆酸盐的能力主要取决于其阳离子化程度.修饰后的壳聚糖结合胆酸盐的能力增强,说明引入更多的胺基或铵基有利于对胆酸盐的结合.  相似文献   

11.
Cross-linked chitosan resins with catechol (catechol-type chitosan, type 1 and type 2), iminodiacetic acid (IDA-type chitosan), iminodimetylphosphonic acid (IDP-type chitosan), phenylarsonic acid (phenylarsonic acid-type chitosan), or serine (serine-type chitosan) were prepared for the collection and concentration of uranium(VI). The adsorption behavior of U(VI) and other ionic species, such as metal ions and oxo-acid ions, on the cross-linked chitosan (base material) and chitosan resins modified with chelating moieties was examined using a column procedure. Especially, the catechol-type chitosan (type 2) adsorbed U(VI) at pH 2-7, and selectively collected U(VI) at acidic pH regions by forming a stable chelate with hydroxyl groups of catechol moiety introduced to the chitosan. Also, the adsorption properties of cationic and anionic species present in aquatic media were elucidated. The adsorption ability for U(VI) was in the order: catechol-type chitosan (type 2) > serine-type chitosan > phenylarsonic acid-type chitosan > the others. The catechol-type chitosan (type 2) was useful for the collection and concentration of uranium(VI).  相似文献   

12.
In this study, nitrogen-plasma treatment was used to enhance the coating of chitosan onto cotton fabric and chlorine was introduced into nitrogen-containing groups on the chitosan coated fabric in order to make it antimicrobial by chlorination with sodium hypochlorite. The antimicrobial property and its rechargeability were investigated. FTIR, UV and scanning electron microscope were used to evaluate the surface properties, including the existence of chitosan on cotton fabric, the content of chitosan on cotton fabric and the surface topography of cotton fabric after modification. The results showed that nitrogen-plasma introduces nitrogen-containing groups into cotton fabric, the coating of chitosan on fabric was improved with nitrogen plasma treatment and chlorine was introduced into the chitosan coated fabric successfully which inhibits bacteria effectively and it is rechargeable. Thus, the antimicrobial property of cotton fabric coated with chitosan with the aid of nitrogen-plasma treatment after chlorination achieved good effects.  相似文献   

13.
应用壳聚糖-海藻酸盐微囊技术制备了一系列胰岛素微囊,并研究了不同反应条件如海藻酸钠浓度、壳聚糖浓度、壳聚糖分子量及壳聚糖溶液pH值对微囊的胰岛素包封率及其释放性能的影响。结果表明,海藻酸钠浓度越高,微囊对胰岛素的包封率越高,在模拟小肠液中释放速率越低;壳聚糖浓度越大,微囊的胰岛素包封率及其在模拟胃液中释放率越高,在模拟肠液中释放达最大值所需时间越长;而随壳聚糖分子量减小,微囊在胃液中释放率增高;壳聚糖溶液pH值的变化对微囊的胰岛素包封率未造成明显影响。  相似文献   

14.
Chitosan nanoparticles were prepared from chitosan of different molecular weight by spray drying. The morphology of the particles was characterized by SEM, and size distribution and zeta potential were determined. The effects of chitosan solution concentration, molecular weight of chitosan, and size of the spray dryer nozzles on average size, size distribution and zeta potential of chitosan nanoparticles were investigated. The effects of chitosan nanoparticles and chitosan nanoparticles–amoxicillin complex on Staphylococcus aureus were also tested. The results showed that the average size of chitosan nanoparticles were in the range 95.5–395 nm and zeta potentials were 39.3–45.7 mV, depending on the concentration and molecular weight of the chitosan. The lower the concentration and molecular weight of the chitosan, the smaller the chitosan nanoparticles and the higher the zeta potential. Testing for antibacterial activity against S. aureus indicated that chitosan nanoparticles strongly inhibited growth of the bacteria; the minimum inhibitory concentration, 20 μg/mL, was lower than those of chitosan solution or amoxicillin. The antibacterial capacity of chitosan nanoparticles also depended on the size, zeta potential, and molecular weight of the chitosan. Complexation of chitosan nanoparticles with amoxicillin improved the antibacterial activity of amoxicillin.  相似文献   

15.
Preparation of electrospun chitosan/poly(vinyl alcohol) membranes   总被引:1,自引:0,他引:1  
Electrospinning of chitosan from its solutions in 2% aqueous acetic acid was studied by adding poly(vinyl alcohol) (PVA) as a “guest” polymer. Properties of the chitosan/PVA solutions including viscosity, conductivity, and surface tension were measured, and effects of the polymer concentration, chitosan/PVA mass ratio and processing parameters (applied voltage, flow rate, capillary-to-collector distance) on the electrospinnability of chitosan/PVA were investigated. Analyses of scanning electron micrographs and transmission electron micrographs suggested that the chitosan/PVA ultrafine fibers were often obtained along with beads, and chitosan was located in the elctrospun fibers as well as in the beads. Uniform chitosan/PVA fibers with an average diameter of 99 ± 21 nm could be prepared from a 7% chitosan/PVA solution in 40:60 mass ratio. Results of Fourier transform infrared spectroscopy and X-ray diffraction demonstrated that there were possible hydrogen bonds between chitosan and PVA molecules, which could weaken the strong interaction in chitosan itself and facilitate chitosan/PVA electrospinnability. The electrospun chitosan/PVA membranes showed higher water uptake and would have potential applications in wound dressings.  相似文献   

16.
Chitosan film was immersed in NaOH solution with xylan to simply prepare active chitosan/xylan film. FT-IR, XRD, FE-SEM, AFM and XPS were used to evaluate the effects of xylan on the structure and morphology of chitosan film, and a wide variety of material characteristics of the chitosan/xylan composite films were investigated. The results showed that the xylan chains entered into the gap of chitosan film and became nodules, leading to strong hydrogen bonds and electrostatic interactions between chitosan and xylan. Moreover, the introduction of xylan not only resulted in stronger crystallinity and a more compact structure of chitosan film, but also had an important effect on the properties of chitosan film. The tensile strength, breaking elongation and anti-ultraviolet performance of the chitosan/xylan films were improved greatly with the increasing concentration of xylan; the water vapor transmission rate, water absorption rate and oxygen barrier property of chitosan/xylan composite films were higher than those of chitosan film; chitosan/xylan composite films still showed hydrophobicity when the xylan concentration was more than 1 %. The chitosan/xylan composite film has more potential to be used as food packaging than pure chitosan film.  相似文献   

17.
The swelling behavior of chitosan hydrogels in ionic liquid-water binary systems was studied using hydrophilic room-temperature ionic liquids (RTILs) to elucidate the swelling mechanism of chitosan hydrogels. No penetration of RTIL into a dry chitosan material was observed. Swelling was achieved by soaking in water-RTIL binary mixtures, with larger swelling observed at higher water contents. In one instance, the binary mixture was acidic and produced larger than expected swelling due to the dissociation of the amine groups in the chitosan. The equilibrium binary system content behavior of the chitosan hydrogels depended upon the amount of free water, which is a measure of the number of water molecules that do not interact with the ionic liquid. After evaporation of water, remnant RTIL remained in the chitosan network and hardness testing indicated a plasticization effect, suggesting that the RTIL molecularly mixed with the chitosan. Chitosan hydrogels containing only RTIL were prepared by dropping pure RTIL onto a fully preswollen hydrogel followed by water evaporation. This method may be a useful means for preparing air-stable swollen chitosan gels.  相似文献   

18.
于建 《高分子科学》2009,(3):387-392
Biopolymer chitosan was used to modify the mechanical properties of soluble eggshell membrane protein(SEP) films.The SEP/chitosan blend films were prepared by solution casting from 10%aqueous acetic acid.Tensile strength and elongation at break of the blend films increased with increasing amount of chitosan.Microphase separation was observed by field emission scanning electron microscopy,although interaction between the two components was revealed by FTIR.The biocompatibility of SEP/chitosan blend films ...  相似文献   

19.
Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18β-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18β-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 β-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.  相似文献   

20.
Hydroxyethyl chitosan and hydroxypropyl chitosan were prepared through the reaction of alkali‐chitosan with 2‐chloroethanol and propylene epoxide, respectively. Fourier transform infrared and 13C NMR measurements were made to examine the substitution on the chitosan unit. According to a comparison of the peak areas between the modified chitosan and unmodified chitosan and the integration of peak areas of 1H NMR spectra, for both modified chitosans, the maximum degree of substitution was less than 25%. The ionic conductivity and mechanical properties of modified chitosan membranes were investigated. In comparison with the unmodified chitosan membrane, hydrated hydroxyethyl and hydroxypropyl chitosan membranes with a higher degree of substitution showed an increase in ionic conductivity of about one order of magnitude; moreover, the crystallinity of hydroxyethyl and hydroxypropyl chitosan membranes was remarkably reduced, and their swelling indices increased significantly. However, these modified membranes did not exhibit significant changes in their tensile strength and breaking elongation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1379–1397, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号