首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects of random laser speckle and self-mixing interference on TDLS based gas measurements made using integrating spheres. Details of the theory and TDLS apparatus are given in Part 1 of this paper and applied here to integrating spheres. Experiments have been performed using two commercial integrating spheres with diameters of 50 mm and 100 mm for the detection of methane at 1651 nm. We have calculated the expected levels of laser speckle related uncertainty, considered to be the fundamental limiting noise, and imaged subjective laser speckle in a sphere using different sized apertures. For wavelength modulation spectroscopy, noise equivalent absorbances (NEAs) of around 5×10?5 were demonstrated in both cases, corresponding to limits of detection of 1.2 ppm methane and 0.4 ppm methane respectively. Longer-term drift was found to be at an NEA of 4×10?4. This lies within our broad range of expectations. For a direct spectral scan with no wavelength dither, a limit of detection of 75 ppm or fractional measured power uncertainty of 3×10?3 corresponded well with our prediction for the objective speckle uncertainty.  相似文献   

2.
Extended wavelength tuning of an IH-QCL (integrated heater quantum cascade laser) is exploited for simultaneous detection of methane and acetylene using direct absorption spectroscopy. The integrated heater, placed within few microns of the laser active region, enables wider wavelength tuning than would be possible with a conventional DFB (distributed feedback) QCL. In this work, the laser current and heater resistor current are modulated simultaneously at 25?kHz to tune the laser over 1279.6–1280.1 cm?1, covering absorption transitions of methane and acetylene. The laser is characterized extensively to understand the dependence of wavelength tuning on modulation frequency, modulation amplitude and phase difference between laser/heater modulation. Thereafter, the designed sensor is validated in both room-temperature static cell experiments and non-reactive high-temperature-measurements in methane-acetylene-argon gas mixtures in the shock tube. Finally, the sensor is applied for simultaneous detection of methane and acetylene during the high-temperature pyrolysis of iso-octane behind reflected shock waves.  相似文献   

3.
By using a wavelength-modulated distributed feedback laser centered at 1.654 µm, a stand-alone near-infrared methane detection device was experimentally proposed based on the tunable diode laser absorption spectroscopy technique. An intelligent temperature controller, a scan and modulation module, and a cost-effective lock-in amplifier were developed to drive the distributed feedback laser and extract the second harmonic signal. Experimental results show that the relative detection error is less than 7% within the detection range of 0–106 ppm, and the limit of detection is about 11 ppm with an absorption length of 0.2 m. Long-term monitoring on two gas samples (103 ppm and 2 × 105 ppm) suggests good stability with the maximum detection errors smaller than 7% and 2.5%, respectively. Due to careful design and integration, the developed near-infrared sensor reveals competitive performances compared with our previously reported sensing devices at the mid-infrared region.  相似文献   

4.
We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high-power Yb:fiber laser, a high-finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.76 μm is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e. the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4×10?9 cm?1?Hz?1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9×10?11 cm?1?Hz?1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8 % of water the detection limit is 130 ppb. Spectra of acetylene, methane, and nitrous oxide at atmospheric pressure are also presented, and a line-shape model is developed to simulate the experimental data.  相似文献   

5.
A trace gases detection system based on integrated cavity output spectroscopy (ICOS) was developed, where a NIR tunable diode laser (TDL) was used as light source, an optical cavity composed by two plan-concave mirrors with reflection near 99.7% was used as the absorption cell. Trace water vapour (H2O), carbon dioxide (CO2), methane (CH4), carbon monoxide (CO) and mixture of CO2 and CO were tested by ICOS based on the characteristics absorption. The wavelength calibration, cavity transmission characteristics, quantitative measurement ability and sensitivity of the TDL-ICOS were also studied, and a evaluated minimum detectable sensitivity of 1.15 × 10?7 cm?1 was obtained when the system was used to CH4 detection. The experiment results show that TDL-ICOS is expected to be a reliable and promising system for the detection of trace gases since it has some advantages such as real-time monitoring, simple device, easy operation, high sensitivity, good stability and quantitative ability.  相似文献   

6.
Recently, hollow-core photonic bandgap fibers (HC-PBFs) for use in the 2 μm wavelength region have become available. We have employed tunable diode laser absorption spectroscopy (TDLAS) to quantify CO2 in nitrogen, injected into a HC-PBF. Our spectrometer contains both an HC-PBF-based absorption cell and an astigmatic Herriott multipass gas cell. The Herriott cell was used for comparison with the HC-PBF cell. The HC-PBF cell’s sensitivity and limit of detection were calculated to be 3.5×10?4 cm?1?Hz?1/2 and 59 ppm?m, respectively. To substantiate the spectrometer performance, a measurement was done in the Herriott cell probing a reference gas mixture with nominal 400 μmol/mol CO2 in N2. The spectrometric results were in good agreement with the reference value. The relative standard uncertainty of the spectrometric result was found to be at the ±2 % level.  相似文献   

7.
We report what we believe to be a novel demonstration of simultaneous detection of multiple trace gases by near-IR tunable diode laser photoacoustic spectroscopy using a cell containing a cantilever microphone. Simultaneous detection of carbon monoxide (CO), ethyne (C2H2), methane (CH4) and combined carbon monoxide/carbon dioxide (CO+CO2) in nitrogen-based gas mixtures was achieved by modulation frequency division multiplexing the outputs of four near-IR tunable diode lasers. Normalized noise-equivalent absorption coefficients of 3.4×10?9, 3.6×10?9 and 1.4×10?9 cm?1?W?Hz?1/2 were obtained for the simultaneous detection of CO, C2H2 and CH4 at atmospheric pressure. These corresponded to noise-equivalent detection limits of 249.6 ppmv (CO), 1.5 ppmv (C2H2) and 293.7 ppmv (CH4) respectively over a measurement period of 2.6 s at the relevant laser power. The performance of the system was not influenced by the number of lasers deployed, the main source of noise arising from ambient acoustic effects. The results confirm that small-volume photoacoustic cells can be used with low optical power tunable diode lasers for rapid simultaneous detection of trace gases with high sensitivity and specificity.  相似文献   

8.
An all-diode-laser-based spectrometer is used for the simultaneous detection of methane, oxygen and water vapour. This is accomplished using a 760-nm diode laser and a 980-nm diode laser in conjunction with difference-frequency generation to 3.4 μm in a periodically poled lithium niobate crystal. Each of the output wavelengths is resonant with one of the molecular species. Simultaneous recordings over a 15-m open path of laboratory air are demonstrated. The recording scheme shows the wide applicability of a diode-laser-based difference-frequency spectrometer for the detection of molecular species in different wavelength ranges. By increasing the frequency of the 760-nm diode laser and decreasing the frequency of the 980-nm diode laser, a maximum continuous tuning range in the mid infrared of 3.6 cm-1 is achieved. This enables the recording of several methane lines at atmospheric pressure. Pressure-dependence studies of methane lineshapes are also performed in an absorption cell. An indoor-air methane background level of 3 ppm is measured. The signal-to-noise ratio in the recorded methane spectra indicates that sub-ppm detection of methane at atmospheric pressure is feasible. Received: 6 March 2000 / Revised version: 19 June 2000 / Published online: 11 October 2000  相似文献   

9.
A stable and convenient optical system to realize the forward phase-matching geometry for degenerate four-wave mixing (DFWM) is demonstrated in the mid-infrared spectral region by measuring DFWM signals generated in acetylene (C2H2) and hydrogen chloride (HCl) molecules by probing the fundamental ro-vibrational transitions. IR laser pulses tunable from 2900 cm?1 to 3350 cm?1 with a 0.025 cm?1 linewidth were obtained using a laser system composed of an injection seeded Nd:YAG laser, a dye laser, and a frequency mixing unit. At room temperature and atmospheric pressure, a detection limit of 35 ppm (~ 9.5×1014 molecules/cm3) for C2H2 was achieved in a gas flow of a C2H2/N2 mixture by scanning the P(11) line of the (010(11)0)–(0000000) band. The detection limit of the HCl molecule was measured to be 25 ppm (~6.8×1014 molecules/cm3) in the same environment by probing the R(4) line. The dependences of signal intensities on molecular concentrations and laser pulse energies were demonstrated using C2H2 as the target species. The variations of the signal line shapes with changes in the buffer gas pressures and laser intensities were recorded and analyzed. The experimental setup demonstrated in this work facilitates the practical implementation of in situ, sensitive molecular species sensing with species-specific, spatial and temporal resolution in the spectral region of 2.7–3.3 μm (3000–3700 in cm?1), where various molecular species important in combustion have absorption bands.  相似文献   

10.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared using the method of laser ablation in various liquids at wavelengths of 397, 532, and 795 nm with laser pulses of different duration are studied. An analysis of the dimensional and spectral characteristics of the silver nanoparticles revealed a time dynamics of the nanoparticle size distribution in solutions. It is shown that thermal self-defocusing is observed for the case of nanosecond or shorter pulses generated with a high repetition rate. For picosecond and femtosecond pulses with a low repetition rate, the effects of self-focusing (γ = 3 × 10?13 cm2 W?1) and saturated absorption (β = ?1.5 × 10?9 cm W?1) were observed in the solutions under study. The third-order nonlinear susceptibility of the silver nanoparticles was found to be 5 × 10?8 esu at a wavelength of 397 nm.  相似文献   

11.
Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration. This instrument takes advantage of recent technology in thermoelectrically cooled pulsed Fabry–Perot (FP) quantum cascaded (QC) laser driving in a pulse mode operating at 7.5 μm to monitor a well-isolated spectral line near the ν4 fundamental band of CH4. A high-quality liquid nitrogen cooled mercury cadmium telluride mid-infrared detector with time discriminating electronics is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 × 10?3 under experimental condition of 200 ppm measured ambient CH4. The instrument operates continuously, and integrated software for laser control using direct absorption provides quantitative trace gas measurements without calibration. One may substitute a QC laser operating at a different wavelength to measure other gases. The instrument can be applied to field measurements of gases of environmental concern.  相似文献   

12.
A resonant photoacoustic cell capable of detecting the traces of gases at an amplitude-modulation regime is represented. The cell is designed so as to minimize the window background for the cell operation at a selected acoustic resonance. A compact prototype cell (the volume of acoustic cavity of ~0.2 cm3, total cell weight of 3.5 g) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia traces in nitrogen flow with the help of a pigtailed DFB laser diode operated near a wavelength of 1.53 µm. The performance of absorption detection and gas-leak sensing for the prototype operated at the second longitudinal acoustic resonance (the resonance frequency of ~4.38 kHz, Q-factor of ~13.9) is estimated. The noise-equivalent absorption normalized to laser-beam power, and detection bandwidth is ~1.44 × 10?9 cm?1 W Hz?1/2. The amplitude of the window-background signal is equivalent to an absorption coefficient of ~2.82 × 10?7 cm?1.  相似文献   

13.
Studies into the suitability of a novel, widely tunable telecom L-band (1,563–1,613 nm) digital supermode distributed Bragg reflector (DS-DBR) laser for cavity ring-down spectroscopy (CRDS) are presented. The spectrometer comprised of a 36.6?cm long linear cavity with ring-down times varying between 19–26 μs across the 50 nm DS-DBR wavelength range due to changes in the cavity mirror reflectivities with wavelength. The potential of such a broadband, high-resolution CRD spectrometer was illustrated by investigating several transitions of CO2 in air, a 5 % calibrated mixture and breath samples. Allan variance measurements at a single wavelength indicated an optimal minimum detectable absorption coefficient (α min) of 3 × 10?10 cm?1 over 20 s.  相似文献   

14.
A compact system for methane sensing based on the Quartz-Enhanced Photoacoustic Spectroscopy technique has been developed. This development has been taken through two versions which were based respectively on a Fabry Perot quantum wells diode laser emitting at 2.3 μm, and on a quantum wells distributed feedback diode laser emitting at 3.26 μm. These lasers emit near room temperature in the continuous wave regime. A spectrophone consisting of a quartz tuning fork and one steel microresonator was used. Second derivative wavelength modulation detection was used to perform low methane concentration measurements. The sensitivity and the linearity of the QEPAS sensor were studied. A normalized noise equivalent absorption coefficient of 7.26 × 10−6 cm−1 W/Hz1/2 was achieved. This corresponds to a detection limit of 15 ppmv for 12 s acquisition time.  相似文献   

15.
An all-solid-state continuous-wave laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. The single-mode, tunable output of a 10-mW, 395-nm external-cavity diode laser (ECDL) is sum-frequency-mixed with the output of a 115-mW, frequency-doubled, diode-pumped Nd:YAG laser in a beta-barium-borate crystal to produce 40 nW of tunable radiation at 226.8 nm. The wavelength of the 395-nm ECDL is then scanned over NO absorption lines to produce fully resolved absorption spectra. Initial results from mixtures of NO in nitrogen in a room-temperature gas cell are discussed. The estimated NO detection limit of the system for a demonstrated absorption sensitivity of 2×10-3 is 0.2 ppm per meter of path length for 300 K gas. The estimated accuracy of the measurements is ±10%. Received: 25 February 2002 / Revised version: 31 May 2002 / Published online: 8 August 2002  相似文献   

16.
A dual-beam laser absorption spectrometer with balanced detection for high sensitivity detection of oxygen via the A-band at 760 nm is described. The 2×2 vertical-cavity surface-emitting laser arrays used for this set-up are characterized by their wavelength tuning behavior with temperature and current, amplitude modulation, side-mode suppression ratio and polarization contrast. The spectrometer performance is determined over time periods of up to 10 h using the variation in the differential absorption between two beam paths. With the R11R11 line at STP, 670 μW laser power and 200 mm-long absorption cells, we realized an excellent linearity (R=0.9999) and over a 5-min interval a record sensitivity for VCSEL-based spectrometers of 35 ppmV, corresponding to an optical density (O.D.) of 7×10-7. For this specific set-up, this sensitivity is only a factor of 2.7 above the shot noise limit, giving us a normalized detection limit of 7.6 ppmV·m·. Over a 10-h interval we achieved a standard deviation of 65 ppmV. Received: 26 July 2000 / Revised version: 1 November 2000 / Published online: 6 December 2000  相似文献   

17.
A new candidate laser dye based 1,4-bis[β-(2-naphthothisolyl) vinyl] benzene (BNTVB) were prepared, and characterized in various organic solvents. The center polarity is less sensitive than electronic absorption. A red shift was noticed in the fluorescence spectra (ca. 40 nm) with increment in the solvent’s polarity, this means that BNTVB’s polarity appreciates upon excitation. The dipole moment of ground state (μg) and the excited singlet state dipole moment (μe) are determined from Kawski – Chamma and Bakshiev–Viallet equations using the disparity of Stokes shift with solvent polarity function of ε (dielectric constant) and n (refractive index) of the solvent. The result was found to be 0.019D and 5.13D for ground and exited state, in succession. DFT/TD-DFT manners were used to understand the electronic structures and geometric of BNTVB in other solvents. The experimental and theoretical results showed a good agreement. The photochemical quantum yield (Фc) of BNTVB was calculated in variable organic reagents such as Dioxane, CHCl3, EtOH and MeOH at room temperature. The values of φc were calculated as 2.3?×?10?4, 3.3?×?10?3, 9.7?×?10?5 and 6.2?×?10?5 in Dioxane, CHCl3, EtOH and MeOH, respectively. The dye solutions (2?×?10?4 M) in DMF, MeOH and EtOH give laser emission in the blue-green region. The green zone is excited by nitrogen pulse 337.1 nm. The tuning range, gain coefficient (α) and cross – section emission (σe) of laser were also estimated. Excitation energy transfer from BNTVB to rhodamine-6G (R6G) and N,N-bis(2,6-dimethyphenyl)-3,4:9,10-perylenebis-(dicarboximide) (BDP) was also studied in EtOH to increase the laser emission output from R6G and BDP when excited by nitrogen laser. The dye-transfer power laser system (ETDL) obeys the Foster Power Transmission (FERT) mechanism with a critical transmission distance, Ro of 40 and 32 ? and kET equals 2.6?×?1013 and 1.06?×?1013 M?1 s?1 for BNTVB / R6G and BNTVB / BDP pair, respectively.  相似文献   

18.
An ultra-sensitive photo-acoustic spectrometer using a 10.4 μm broadly tunable mid-IR external cavity quantum cascade laser (EC-QCL) coupled with optical feedback to an optical power buildup cavity with high reflectivity mirrors was developed and tested. A laser optical power buildup factor of 181 was achieved, which corresponds to an intra-cavity power of 9.6 W at a wavelength of 10.4 μm. With a photo-acoustic resonance cell placed inside the cavity this resulted in the noise-equivalent absorption coefficient of 1.9 × 10?10 cm?1 Hz?1/2, and a normalized noise-equivalent absorption of 1.1 × 10?11 cm?1 W Hz?1/2. A novel photo-acoustic signal normalization technique makes the photo-acoustic spectrometer’s response immune to changes and drifts in the EC-QCL excitation power, EC-QCL to cavity coupling efficiency and cavity mirrors aging and contamination. An automatic lock of the EC-QCL to the cavity and optical feedback phase optimization permitted long wavelength scans within the entire EC-QCL spectral tuning range.  相似文献   

19.
The optical, structural, and nonlinear optical characteristics of GaAs nanoparticles obtained by laser ablation in different liquids were investigated. Thermally induced self-defocusing in GaAs solutions was observed using both a high pulse repetition rate and nanosecond pulses. In studying the nonlinear optical characteristics of GaAs solutions using picosecond and femtosecond pulses, two-photon absorption was observed. The nonlinear absorption coefficient of an aqueous GaAs solution measured by the Z-scan technique and the nonlinear susceptibility of GaAs nanoparticles were, respectively, 0.7 × 10?9 cm W?1 and 2 × 10?9 esu at a wavelength of 795 nm.  相似文献   

20.
Vertical-Cavity Surface-Emitting Laser (VCSEL) diodes are among the youngest members of the semiconductor laser diode family. The main aim of our work focuses on the measurement of the basic properties (the spectral range of the laser emission, temperature and current tunability) of experimental VCSEL diode lasers based on GaSb operating in the infrared region around 4250 cm?1. A high-resolution FTIR Bruker IFS 120 HR spectrometer with a maximum resolution of 0.0035 cm?1 was used in the emission setup for the laser diagnostic research. The absorption spectra of atmospheric pollutants like methane, carbon monoxide and ammonia have been measured using these VCSELs for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号