首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished.  相似文献   

2.
Gas turbines, liquid rocket motors, and oil-fired furnaces utilize the spray combustion of continuously injected liquid fuels. In most cases, the liquid spray is mixed with an oxidizer prior to combustion, and further oxidizer is supplied from the outside of the spray to complete diffusion combustion. This rich premixed spray is called “partially premixed spray.” Partially premixed sprays have not been studied systematically although they are of practical importance. In the present study, the burning behavior of partially premixed sprays was experimentally studied with a newly developed spray burner. A fuel spray and an oxidizer, diluted with nitrogen, was injected into the air. The overall equivalence ratio of the spray jet was set larger than unity to establish partially premixed spray combustion. In the present burner, the mean droplet diameter of the atomized liquid fuel could be varied without varying the overall equivalence ratio of the spray jet. Two combustion modes with and without an internal flame were observed. As the mean droplet diameter was increased or the overall equivalence ratio of the spray jet was decreased, the transition from spray combustion only with an external group flame to that with the internal premixed flame occurred. The results suggest that the internal flame was supported by flammable mixture through the vaporization of fine droplets, and the passage of droplet clusters deformed the internal flame and caused internal flame oscillation. The existence of the internal premixed flame enhanced the vaporization of droplets in the post-premixed-flame zone within the external diffusion flame.  相似文献   

3.
In our previous numerical studies [Nishioka Makihito, Zhenyu Shen, and Akane Uemichi. “Ultra-lean combustion through the backflow of burned gas in rotating counterflow twin premixed flames.” Combustion and Flame 158.11 (2011): 2188–2198. Uemichi Akane, and Makihito Nishioka. “Numerical study on ultra-lean rotating counterflow twin premixed flame of hydrogen–air.” Proceedings of the Combustion Institute 34.1 (2013): 1135–1142]. we found that methane– and hydrogen–air rotating counterflow twin flames (RCTF) can achieve ultralean combustion when backward flow of burned gas occurs due to the centrifugal force created by rotation. In this study, we investigated the mechanisms of ultralean combustion in these flames by the detailed numerical analyses of the convective and diffusive transport of the main species. We found that, under ultralean conditions, the diffusive transport of fuel exceeds its backward convective transport in the flame zone, which is located on the burned-gas side of the stagnation point. In contrast, the relative magnitudes of diffusive and convective transport for oxygen are reversed compared to those for the fuel. The resulting flows for fuel and oxygen lead to what we call a ‘net flux imbalance’. This net flux imbalance increases the flame temperature and concentrations of active radicals. For hydrogen–air RCTF, a very large diffusivity of hydrogen enhances the net flux imbalance, significantly increasing the flame temperature. This behaviour is intrinsic to a very lean premixed flame in which the reaction zone is located in the backflow of its own burned gas.  相似文献   

4.
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.  相似文献   

5.
超声速预混可燃气流的点火与燃烧   总被引:3,自引:0,他引:3  
在激波风洞一激波管组合设备上开展了碳氢燃料超声速预混可燃气流的点火与燃烧实验研究。实验结果表明:利用激波对燃料进行预热,并以高温燃气作为引导火焰,可以有效缩短汽油空气超声速可燃混气的点火延迟时间,使之缩短到 0.2 ms以下。利用纹影照片对超声速燃烧流场结构作出了分析;研究了超声速预混可燃气流的温度以及当量比对超声速燃烧流场结构、点火与火焰传播特性的影响。  相似文献   

6.
We have investigated the downward flame spread over a thin solid fuel. Hydrogen, methane, or propane, included in the gaseous product of pyrolysis reaction, is added in the ambient air. The fuel concentration is kept below the lean flammability limit to observe the partially premixing effect. Both experimental and numerical studies have been conducted. Results show that, in partially premixed atmospheres, both blue flame and luminous flame regions are enlarged, and the flame spread rate is increased. Based on the flame index, a so-called triple flame is observed. The heat release rate ahead of the original diffusion flame is increased by adding the fuel, and its profile is moved upstream. Here, we focus on the heat input by adding the fuel in the opposed air, which could be a direct factor to intensify the combustion reaction. The dependence of the flame spread rate on the heat input is almost the same for methane and propane/air mixtures, but larger effect is observed for hydrogen/air mixture. Since the deficient reactant in lean mixture is fuel, the larger effect of hydrogen could be explained based on the Lewis number consideration. That is, the combustion is surely intensified for all cases, but this effect is larger for lean hydrogen/air mixture (Le < 1), because more fuel diffuses toward the lean premixed flame ahead of the original diffusion flame. Resultantly, the pyrolysis reaction is promoted to support the higher flame spread rate.  相似文献   

7.
Under micro-scale combustion influenced by quenching distance, high heat loss, shortened diffusion characteristic time, and flow laminarization, we clarified the most important issues for the combustor of ultra-micro gas turbines (UMGT), such as high space heating rate, low pressure loss, and premixed combustion. The stability behavior of single flames stabilized on top of micro tubes was examined using premixtures of air with hydrogen, methane, and propane to understand the basic combustion behavior of micro premixed flames. When micro tube inner diameters were smaller than 0.4 mm, all of the fuels exhibited critical equivalence ratios in fuel-rich regions, below which no flame formed, and above which the two stability limits of blow-off and extinction appeared at a certain equivalence ratio. The extinction limit for very fuel-rich premixtures was due to heat loss to the surrounding air and the tube. The extinction limit for more diluted fuel-rich premixtures was due to leakage of unburned fuel under the flame base. This clarification and the results of micro flame analysis led to a flat-flame burning method. For hydrogen, a prototype of a flat-flame ultra-micro combustor with a volume of 0.067 cm3 was made and tested. The flame stability region satisfied the optimum operation region of the UMGT with a 16 W output. The temperatures in the combustion chamber were sufficiently high, and the combustion efficiency achieved was more than 99.2%. For methane, the effects on flame stability of an upper wall in the combustion chamber were examined. The results can be explained by the heat loss and flame stretch.  相似文献   

8.
以往关于层流火焰速度的理论分析均只考虑单组分燃料,本文对双组分燃料的平面火焰进行了大活化能渐近理论分析。在理论分析中,将火焰结构分为预热区、化学反应区和平衡区,并在大活化能假设下对各个区域分别求解了关于温度与燃料质量分数的微分方程。根据每两个区域分界面上满足的结合条件,本文推导出了双组分燃料的层流火焰速度模型。该模型表明双组分燃料层流火焰速度的平方为各个单组分燃料层流火焰速度平方的加权平均。  相似文献   

9.
氢是一种非常有前景的清洁可再生能源载体.掺氢燃料预混稀燃是当前开发清洁高效的低排放燃气轮机最重要的能源转化方式之一。本文基于预混CH4/H2/air本生灯火焰,对氢气掺混影响下的湍流火焰详细火焰结构进行了测量和表征。实验采用CH2O和OH基平面激光诱导荧光(PLIF,Planar Laser Induced Fluorescence)同步测量技术,获得了火焰预热区、反应区以及已燃区的详细火焰结构信息。本文对反应区和预热区火焰厚度进行了提取和统计。研究表明,氢气对火焰反应区、预热区均有明显作用。结果表明,掺氢小幅度增厚反应区厚度,但能够比较明显地降低预热区厚度。  相似文献   

10.
本文采用完全可压缩的N-S方程,对当量比为1.0的H2/air旋流预混火焰进行了直接数值模拟研究。氢气和空气的化学反应采用9种组分19步的详细机理。模拟结果表明,强旋流流场中存在回流区,碗形旋流火焰稳定在回流区的外围。在火焰面上沿火焰法向提取了局部火焰结构,将局部湍流火焰结构与层流预混火焰的火焰结构进行了比较,发现局部湍流火焰比层流预混火焰更薄,燃烧强度更高。  相似文献   

11.
A three mixture fraction flamelet model is proposed for multi-stream laminar pulverized coal combustion. The technique of coordinate transformation is utilized to map the flamelet solutions from a unit pyramid space into a unit cubic space to improve the stability of the simulation. The validity of the three mixture fraction flamelet model was assessed on different configurations, including a laminar counterflow pulverized coal/methane flame and a laminar piloted pulverized coal jet flame. The flamelet predictions were compared to the reference results of the detailed chemistry solutions. For the counterflow flame, it was found that the flame temperature and major species mass fractions are correctly predicted by the three mixture fraction flamelet model. However, discrepancies are observed for combustion-mode-sensitive species such as CO and H2 in the premixed combustion region. The thermo-chemical quantities in the char surface reaction zone cannot be correctly predicted if the mixing between the char off-gas stream and other streams is neglected. For the piloted jet flame, it was shown that the stable thermo-chemical variables can be correctly predicted at the upper and middle stream locations. However, at the downstream location, discrepancies can be observed in certain regions. Overall, the validity of the three mixture fraction flamelet model for multi-stream pulverized coal combustion is confirmed and its performance in turbulent pulverized coal combustion will be tested in future work.  相似文献   

12.
A fundamental study aimed at investigating the stabilization characteristics of edge flames established in the near-wake of two merging streams, one containing fuel and the other oxidizer, is presented, with the main focus placed on the effects of the thermal interaction between the flame and the splitter plate. To this end, a diffusive-thermal model characterized by constant gas density and transport coefficients is used for conditions at which flame liftoff is likely to occur. It is assumed that the incoming streams are of equal strain rates, that the fuel and oxidizer are supplied in stoichiometric proportion, and that the mass diffusivities of the reactants are equal, such that the resulting combustion field is symmetric with respect to the centerline extending from the splitter plate. The results indicate that the plate has a negligible effect on the edge flame unless the tip of the plate intrudes into the preheat zone of the curved premixed flame segment forming the edge flame. In an overall adiabatic system, the heat conducted from the flame to the plate is completely recirculated back to the reactants via the lateral surfaces of the plate, thus supporting an excess enthalpy flame in the near-wake. The average output heat flux, defined as the total heat output through the lateral surfaces of the plate divided by the characteristic length associated with the temperature variation along the plate, is identified as an appropriate measure to characterize the heat recirculation efficiency.  相似文献   

13.
Control of oscillating combustion and noise based on local flame structure   总被引:2,自引:0,他引:2  
To control combustion oscillations, the characteristics of an oscillating swirl injection premixed flame have been investigated, and control of oscillating combustion and noise based on local flame structure has been conducted. The r.m.s. value of pressure fluctuations and noise level show significantly large values between = 0.8 and 1.1. The beating of pressure fluctuations is observed for the large oscillating flame conditions in this combustor. Relationship between beating of pressure fluctuations and local flame structure was observed by the simultaneous measurement of CH/OH planar laser induced fluorescence and pressure fluctuations. The local flame structure and beating of pressure fluctuations are related and the most complicated flame is formed in the middle pressure fluctuating region of beating. The beating of pressure fluctuations, which plays important roles in noise generation and nitric oxide emission in this combustor, could be controlled by injecting secondary fuel into the recirculating region of oscillating flames. Injecting secondary fuel prevented lean blowout, and low NOx combustion was also achieved even for the case of pure methane injection as a secondary fuel. By injecting secondary fuel into the recirculating region near the swirl injector, the flame lifted from the swirl injector and its reaction region became uniform and widespread, hence resulting in low nitric oxide emission. Secondary mixture injection, fuel diluted with air, is not effective for control of combustion oscillations suppression and lean blowout prevention.  相似文献   

14.
Pilot-ignited dual fuel combustion involves a complex transition between the pilot fuel autoignition and the premixed-like phase of combustion, which is challenging for experimental measurement and numerical modelling, and not sufficiently explored. To further understand the fundamentals of the dual fuel ignition processes, the transient ignition and subsequent flame development in a turbulent dimethyl ether (DME)/methane-air mixing layer under diesel engine-relevant conditions are studied by direct numerical simulations (DNS). Results indicate that combustion is initiated by a two-stage autoignition that involves both low-temperature and high-temperature chemistry. The first stage autoignition is initiated at the stoichiometric mixture, and then the ignition front propagates against the mixture fraction gradient into rich mixtures and eventually forms a diffusively-supported cool flame. The second stage ignition kernels are spatially distributed around the most reactive mixture fraction with a low scalar dissipation rate. Multiple triple flames are established and propagate along the stoichiometric mixture, which is proven to play an essential role in the flame developing process. The edge flames gradually get close to each other with their branches eventually connected. It is the leading lean premixed branch that initiates the steady propagating methane-air flame. The time required for the initiation of steady flame is substantially shorter than the autoignition delay time of the methane-air mixture under the same thermochemical condition. Temporal evolution of the displacement speed at the flame front is also investigated to clarify the propagation characteristics of the combustion waves. Cool flame and propagation of triple flames are also identified in this study, which are novel features of the pilot-ignited dual fuel combustion.  相似文献   

15.
Large eddy simulations (LES) are employed to investigate the effect of the inlet turbulence intensity on the H2/CH4 flame structure in a hot and diluted co-flow stream which emulates the (Moderate or Intense Low-oxygen Dilution) MILD combustion regime. In this regard, three fuel inlet turbulence intensity profiles with the values of 4%, 7% and 10% are superimposed on the annular mixing layer. The effects of these changes on the flame structure under the MILD condition are studied for two oxygen concentrations of 3% and 9% (by mass) in the oxidiser stream and three hot co-flow temperatures 1300, 1500 and 1750 K. The turbulence-chemistry interaction of the numerically unresolved scales is modelled using the (Partially Stirred Reactor) PaSR method, where the full mechanism of GRI-2.11 represents the chemical reactions. The influences of the turbulence intensity on the flame structure under the MILD condition are studied by using the profile of temperature, CO and OH mass fractions in both physical and mixture fraction spaces at two downstream locations. Also, the effects of this parameter are investigated by contours of OH, HCO and CH2O radicals in an area near the nozzle exit zone. Results show that increasing the fuel inlet turbulence intensity has a profound effect on the flame structure particularly at low oxygen mass fraction. This increment weakens the combustion zone and results in a decrease in the peak values of the flame temperature and OH and CO mass fractions. Furthermore, increasing the inlet turbulence intensity decreases the flame thickness, and increases the MILD flame instability and diffusion of un-burnt fuel through the flame front. These effects are reduced by increasing the hot co-flow temperature which reinforces the reaction zone.  相似文献   

16.
The interaction between a laminar flame and a vortex is an important study for understanding the fundamentals of turbulent combustion. In the past, however, flame-vortex interactions have been investigated only for high-temperature flames. In this study, the impact of a vortex on a premixed double flame, which consists of a coupled cool flame and a hot flame, is examined experimentally and computationally using dimethyl ether/oxygen/ozone mixtures. The double flame is first shown to occur near the extinction limit of the hot flame. The differences between steady-state cool flames, double flames, and hot flames are explored in a one-dimensional counterflow configuration. The transient interactions between double flames and impinging vortices are then investigated experimentally using a micro-jet and numerically in two-dimensional transient modeling. It is seen that the vortex can extinguish the near-limit hot flame locally, resulting in a lone cool flame. At higher vortex intensities, the cool flame may also be extinguished after the extinction of the hot flame. It is found that there can be three different transient flame structures coexisting at the same time: an extinguished flame hole, a cool flame, and a double flame. Moreover, flame curvature is shown to play an important role in determining whether the vortex weakens or strengthens the cool flame and double flame.  相似文献   

17.
Flame synthesis of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Flames offer potential for synthesis of carbon nanotubes in large quantities at considerably lower costs than that of other methods currently available. This study aims to examine conditions for carbon nanotube formation in premixed flames and to characterize the morphology of solid carbon deposits and their primary formation mechanisms in the combustion environment. Single-walled nanotubes have been observed in the post-flame region of a premixed acetylene/oxygen/15 mol% argon flame operated at 6.7 kPa with Fe(CO)5 vapor used as a source of metallic catalyst necessary for nanotube growth. Thermophoretic sampling and transmission electron microscopy were used to characterize the solid material present in the flame at various heights above burner (HAB), giving a resolution of formation dynamics within the flame system. Catalyst particle formation and growth is observed to dominate the immediate post-flame region (10–40 mm HAB). Nanotubes were observed to be present after 40 mm HAB with nanotube inception occurring as early as 30 mm HAB. Between 40 and 70 mm HAB, nanotubes are observed to coalesce into clusters. A nanotube formation ‘window’ is evident with formation limited to fuel equivalence ratios between 1.5 and 1.9. A continuum of morphologies ranging from relatively clean clusters of nanotubes to amorphous material is observed between these lower and upper limits. High-resolution TEM and Raman spectroscopy revealed nanotube bundles with each nanotube being single-walled with diameters between 0.9 and 1.5 nm.  相似文献   

18.
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Zc correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Zc correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.  相似文献   

19.
The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, “free-layer” flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane-air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane-air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.  相似文献   

20.
Tabulated chemistry and presumed probability density function (PDF) approaches are combined to perform RANS modeling of premixed turbulent combustion. The chemistry is tabulated from premixed flamelets with three independent parameters: the equivalence ratio of the mixture, the progress of reaction, and the specific enthalpy, to account for heat losses at walls. Mean quantities are estimated from presumed PDFs. This approach is used to numerically predict a turbulent premixed flame diluted by hot burnt products at an equivalence ratio that differs from the main stream of reactants. The investigated flame, subjected to high velocity fluctuations, has a thickened-wrinkled structure. A recently proposed closure for scalar dissipation rate that includes an estimation of the coupling between flame wrinkling and micromixing is retained. Comparisons of simulations with experimental measurements of mean velocity, temperature, and reactants are performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号