首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于圆柱壳的振动方程以及壳与流体边界上振速连续条件,推导了简支在刚性圆管上的有限长圆柱壳的低频声辐射的自辐射阻抗和互辐射阻抗计算公式,在考虑结构损耗情况下求解了圆柱壳的机械阻抗、表面振速、辐射声功率、辐射效率以及辐射声场的分布特征。结果表明:低阶模态自辐射阻抗大于互辐射阻抗,且自辐射阻随模态阶次增大迅速减小;当p、m同为偶数或奇数时模态辐射阻系数rpmqq大于零,反之小于零。模态辐射抗系数xpmqq在零值附近波动并当ka趋于无穷大时xpmqq都趋向零;p与m相差越大,rpmqq和xpmqq越小。当激励力频率较低时圆柱壳辐射声场指向性为"∞"和"8"叠加的形状;随频率增高,轴向模态和周向模态综合效果导致辐射声场指向性趋于复杂。计算简支圆柱壳的声辐射特征,必须要考虑结构的损耗。  相似文献   

2.
建立大型复杂圆柱壳中高频振动噪声仿真计算方法,对于解决船舶和飞机等大型复杂结构的辐射噪声预报问题具有重要意义。介绍了完美匹配层流固耦合计算方法,并成功应用于大型复杂双层圆柱壳的水下辐射噪声预报,相对于传统的声学流固耦合有限元和边界元计算方法,使外部流场域模型至少缩小了11/15。探讨了环频率和阻尼对圆柱壳结构振动传递的影响,提出了求解中高频声学问题时大型圆柱壳复杂结构仿真建模处理方法。数值算例表明,发展的PML方法和模型简化方法是合理的,可应用工程问题研究。  相似文献   

3.
基于齐次扩容精细积分法和复数矢径虚拟边界谱方法,利用Fourier积分变换和稳相法,提出了一种具有较高效率和精度的新的求解水下纵向加肋无限长非圆柱壳声辐射问题的半解析方法.考虑了非圆柱壳和肋骨之间同时存在多种相互作用力和力偶矩,较已往很多学者仅计及法向相互作用力更加符合实际.不仅比较了该文方法和精确解计算纵向加肋圆柱壳在集中点力激励下的声辐射计算结果,同时还研究了肋骨数量、大小以及椭圆柱壳横截面椭圆度对声辐射特性的影响.数值计算结果表明该文方法较已有的混合FE-BE法更为有效.  相似文献   

4.
充液圆柱壳的自振特性   总被引:4,自引:0,他引:4  
文内含液圆柱壳的自由振动方程组以力矩理论为基础,壳面位移用梁函数逼近。壳内的流体力学方程用有限Hankel变换分段求解,结果能满足全流场条件。用广义液动压力表示流体与结构的相互作用,从而把充液圆柱壳的自由振动归结为广义代数特征值问题。为了比较方法的精度,以两端简支、端头有刚性平面限制的圆柱壳为例,计算了空壳和充液壳的频率,初步讨论了各阶频率与周波数的关系,最易激发周波数的变化规律。理论计算的频率值与实验结果一致。  相似文献   

5.
变角度纤维复合材料的纤维方向角可沿铺层面内连续变化,因此相应结构的性能具有更高的设计灵活性和更大的优化空间.本文假设纤维方向角沿圆柱壳的轴向呈正弦函数变化,对变角度纤维复合材料圆柱壳在两端简支边界条件下的轴压屈曲问题进行研究.基于Donnell经典壳体理论,推导变角度纤维复合材料圆柱壳的前屈曲控制方程并运用伽辽金法进行求解,然后采用瑞利里兹法求解屈曲问题.通过和现有文献及有限元数值结果的对比,验证了本文模型的收敛性和正确性,通过数值算例分析了纤维起始角和终止角的变化对圆柱壳的屈曲临界荷载的影响.本文的研究结果可为变角度纤维复合材料圆柱壳的分析和设计提供一定的参考.  相似文献   

6.
李骁  李映辉  赵华 《力学季刊》2016,37(2):266-273
研究了轴向运动层合圆柱壳体的振动特性.基于Donnell壳体理论,建立了轴向运动层合圆柱壳体的横向振动方程,使用Galerkin方法求解该振动方程,得到其固有频率,通过与有限元结果对比说明方法的有效性.分析了轴向速度、纤维方向角、长径比和厚径比对壳体振动特性的影响.研究表明:当纤维方向角为 (15?/-15?)s时,轴向运动柱壳前3阶固有频率达到最大值.  相似文献   

7.
本文基于有限元法、边界元法和虚拟激励法,对随机激励下结构振动声辐射问题进行研究。提出了一种计算随机激励下结构振动声辐射问题的新方法,其中,有限元法用于计算结构谐振响应,边界元法用于计算结构振动声辐射,虚拟激励法结合有限元和边界元计算随机激励下结构振动声辐射问题。 数值算例表明,本文方法在计算精度上与传统方法等价,且更具高效性。  相似文献   

8.
舱壁和环肋加强的无限长圆柱壳声弹耦合模型及其声特性   总被引:8,自引:1,他引:8  
基于最一般情况,借助线弹性薄壳理论,建立了加肋圆柱壳声辐射计算模型,分析模型考虑了环肋和舱壁对圆柱壳的径向、切向、纵向作用力以及纵向弯矩,导出了分析模型的怕弹耦合控制方程,利用傅氏变换和模态展开给出了辐射声压的计算方法,通过大量数值计算,研究了舱壁、环肋刚度与间距以及结构阻尼等因素对辐射声压的影响,分析模型与工程实际比较接近,有较广的应用范围。  相似文献   

9.
电活性聚合物圆柱壳静态与动态电压下的响应及稳定性   总被引:1,自引:1,他引:0  
摘要:在电活性聚合物圆柱壳内外表面施加电压,圆柱壳会变薄并且伸长,因此相同的电压会在圆柱壳内产生更大的电场。这个正反馈可能使圆柱壳厚度不断变薄,最终导致其失稳破坏。本文研究了电活性聚合物圆柱壳在静态和周期电压作用下的响应及稳定性问题。采用neo-Hookean材料模型得到描述圆柱壳表面运动的非线性常微分方程。给出了圆柱壳在不同厚度和边界条件下外加电压随圆柱壳变形的变化曲线,结果表明存在一个临界电压,当外加电压大于这一临界值时,圆柱壳将被破坏。同时,也讨论了厚度和边界条件对临界电压的影响。圆柱壳在正弦周期电压作用下,其运动随时间的变化是周期性的或拟周期性的非线性振动。给出了圆柱壳振动固有频率的计算结果,采用打靶法得到圆柱壳振动的周期解,并且用数值法研究了周期解的稳定性。采用数值仿真得到圆柱壳振动振幅随外加动态电压激励频率的变化曲线,结果表明圆柱壳会发生多频共振,共振时圆柱壳振幅发生跳跃,导致圆柱壳失稳破坏。最后给出共振点临近点的振动曲线和相图,并对其振动特性进行讨论。  相似文献   

10.
内部声激励下加筋圆柱壳的声辐射特性分析   总被引:4,自引:0,他引:4  
从Flügge薄壳理论和Helmholtz波动方程出发,根据模态叠加原理推导了有限长加筋圆柱壳受机械力和内部声源简谐激励下的"内部声腔-加筋柱壳-外部声场"耦合方程.比较了点力和点声源作用时圆柱壳的声辐射特性以及传递损失.结果表明:在讨论的频率范围内,点声源对内场均方声压起主要作用;点声源作用下外场辐射声压分布较均匀,其传递损失较点力作用下的大,但壳体的外场声辐射效率较点声源作用下的高.分析结果对圆柱壳体结构的声学设计具有一定的参考价值.  相似文献   

11.
The interaction between a submerged elastic circular cylindrical shell and an external shock wave is addressed. A linear, two-dimensional formulation of the problem is considered. A semi-analytical solution is obtained using a combination of the classical analytical approach based on the use of the Laplace transform and separation of variables, and finite difference methodology. The study consists of two parts. Part I focuses on the simulation and analysis of the acoustic fields induced during the interaction. Both the diffraction (absolutely rigid cylinder) and complete diffraction–radiation (elastic shell) are considered. Special attention is paid to the lower-magnitude shell-induced waves representing radiation by the elastic waves circumnavigating the shell. The focus of Part II is on the numerical analysis of the solution. The convergence of the series solution and finite-difference scheme is analysed. The computation of the response functions of the problem is discussed as well, as is the effect of the bending stiffness on the acoustic field. The membrane model of the shell is considered to analyse such effect, which, in combination with the models addressed in Part I, allows for the analysis of the evolution of the acoustic field around the structure as its elastic properties change from an absolutely rigid cylinder to a membrane. The results of the numerical simulations are compared to available experimental data, and a good agreement is observed.  相似文献   

12.
The interaction between a submerged elastic circular cylindrical shell and an external shock wave is addressed. A linear, two-dimensional formulation of the problem is considered. A semi-analytical solution is obtained using a combination of the classical analytical approach based on the use of the Laplace transform and separation of variables, and finite difference methodology. The study consists of two parts. Part I focuses on the simulation and analysis of the acoustic fields induced during the interaction. Both the diffraction (absolutely rigid cylinder) and complete diffraction–radiation (elastic shell) are considered. Special attention is paid to the lower-magnitude shell-induced waves representing radiation by the elastic waves circumnavigating the shell. The focus of Part II is on the numerical analysis of the solution. The convergence of the series solution and finite-difference scheme is analysed. The computation of the response functions of the problem is discussed as well, as is the effect of the bending stiffness on the acoustic field. The membrane model of the shell is considered to analyse such an effect, which, in combination with the models addressed in Part I, allows for the analysis of the evolution of the acoustic field around the structure as its elastic properties change from an absolutely rigid cylinder to a membrane. The results of the numerical simulations are compared to available experimental data, and a good agreement is observed.  相似文献   

13.
The dynamic characteristic of the tires is a key factor in the road-induced interior noise in passenger vehicles. The tire acoustic cavity is a very important factor in the tire dynamics and it must be considered in analyses. This paper describes a closed form analytical model for tire-wheel structures. In order to incorporate the dynamics of the cavity on the tire response, the tire acoustic-structure coupled problem is solved simultaneously. The tire is modeled as an annular cylindrical shell where only the outside shell is flexible, i.e. tire sidewalls and wheel are assumed rigid. From the analytical solution of the eigenproblems, both the tire structure and cavity acoustic responses are expanded in terms of their eigenfunctions. The main objective of the model is to have an efficient tool to investigate the physical coupling mechanisms between the acoustic cavity and the tire structure without the need of complicated numerical model such as finite elements. The result shows that the proposed model captures the main mechanisms of the effect of the tire air acoustic on the tire dynamics.  相似文献   

14.
The interaction between a submerged fluid-filled elastic circular cylindrical shell and an external shock wave is considered. The study focuses on the internal acoustic field. A linear formulation of the problem is considered. A semi-analytical solution is obtained and used to simulate the interaction. A variety of phenomena are observed in the internal fluid, including the reflection and focusing of the internal acoustic wave as well as the radiation into the fluid of elastic waves propagating in the shell. Throughout the paper, the results of numerical simulations are compared with available experimental data, and a good agreement is observed. The solution developed appears to be suitable for use as a benchmark. Engineering relevance of the phenomena observed is discussed.  相似文献   

15.
针对潜艇在水下爆炸载荷下的鞭状运动,从波动方程出发,推导了二阶双渐近法后期近似,并结合声固耦合法初步解决了双层圆柱壳的内域问题,然后将其与显式有限元耦合形成了圆柱壳结构水下爆炸流固耦合分析方法。通过简单算例验证了本文分析方法的有效性和精度。最后,基于此方法分析了双层圆柱壳结构在水下爆炸载荷下的总体响应特性以及周期比和爆距比对其影响规律。  相似文献   

16.
An expression for the acoustic radiation force function on a solid elastic spherical particle placed in an infinite rigid cylindrical cavity filled with an ideal fluid is deduced when the incident wave is a plane progressive wave propagated along the cylindrical axis. The acoustic radiation force of the spherical particle with different materials was computed to validate the theory. The simulation results demonstrate that the acoustic radiation force changes demonstrably because of the influence of the reflective acoustic wave from the cylindrical cavity. The sharp resonance peaks, which result from the resonance of the fluid-filled cylindrical cavity, appear at the same positions in the acoustic radiation force curve for the spherical particle with different radii and materials. Relative radius, which is the ratio of the sphere radius and the cylindrical cavity radius, has more influence on acoustic radiation force. Moreover, the negative radiation forces, which are opposite to the progressive directions of the plane wave, are observed at certain frequencies.  相似文献   

17.
This work presents a theoretical model to calculate the acoustic radiation force on a rigid cylindrical particle immersed in an ideal fluid near a boundary for an on-axis Gaussian beam. An exact solution of the axial acoustic radiation force function is derived for a cylindrical particle by applying the translation addition theorem of cylindrical Bessel function. We analyzed the effects of the impedance boundary on acoustic radiation force of a rigid cylinder immersed in water near an impedance boundary with particular emphasis on the radius of the rigid cylinder and the distance from the cylinder center to impedance boundary. Simulation results reveal that the existence of particle trapping behavior depends on the choice of nondimensional frequency as well as the offset distance from the impedance boundary. The value of the radiation force function varies when the cylinder lies at the different position of the on-axis Gaussian beam. For the particle with different radius, the acoustic radiation force functions vary significantly with frequency. This study provides a theoretical basis for acoustic manipulation, which may benefit to the improvement and development of the acoustic control technology.  相似文献   

18.
Whether the first-order and Reddy third-order shear deformation shell theories are able to evaluate the vibroacoustic responses of laminated cylindrical shells with normal deformation in the high frequency range or not is examined by comparison with a 3D higher-order shear deformation shell theory. The implicit governing equations of arbitrary angle-ply laminated cylindrical shells are derived from the 3D higher-order and Reddy third-order shell theories, and solved on the basis of the Fourier transform. The Reddy third-order shell theory can be obtained as a special case from the 3D higher-order shell theory. The first-order and Reddy third-order shell theories almost give rise to the same vibrational and acoustic results. These two simple shear deformation shell theories can be used to study far-field acoustic radiation from laminated cylindrical shells from the low to high frequency range, but they show some differences from the 3D higher-order shell theory in high frequency vibration of shells. Nevertheless, the differences of vibrational responses seem not to be distinct. The helical wave spectra of the higher-order radial displacements are nearly separate from those of the low-order radial displacement and play a minor role in far-field acoustic radiation, which makes the two simple shell theories applicable in prediction of acoustic power of the cylindrical shells in the much higher frequency range. Moreover, it also results in the fact that far-field sound is least sensitive in comparison with near-field sound and vibration of shells.  相似文献   

19.
In this paper, an underwater structure is modeled as a cylindrical shell with internal bulkheads, and closed by a truncated conical shell, and it consists of metal substrate and sound absorbing coating, whose FGM core is considered. Suppose the inner cavity and outer space of the structure are filled with air and fluid mediums, the mechanical response of the underwater structure is calculated with Galerkin method while the acoustic response is investigated by means of the Helmholtz integral. Some numerical examples are given and the effect of geometrical size and material parameters on mechanical and acoustic response is discussed.  相似文献   

20.
主动约束层阻尼部分覆盖圆柱壳耦合振动控制   总被引:14,自引:0,他引:14  
采用分布参数建模,从Ham ilton变分原理出发推导了主动约束层阻尼(ACLD)覆盖圆柱壳耦合振动的运动微分方程和边界条件,并扩展适合一维连续结构分析的基于解析解的谱传递矩阵法(STMM)用于ACLD部分覆盖圆柱壳。通过数值计算,研究了ACLD的长度和位置对固有频率和模态耗散因子的影响。STMM能有效克服有限元法单元数目多、动力学方程阶数高及ACLD长度和位置变化时须重复建模的缺点,以最少的单元数目建立低阶控制方程。典型算例显示了STMM的有效性和精确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号