首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
197Au Mössbauer measurements have been performed for Au/Ni and Au/Fe metallic superlattices at below 75 K. For Au/Ni superlattices, the area ratio in a spectrum between a superlattice component and that of the pure Au buffer layer has been determined at 25, 50 and 75 K. From the area ratios, it is found that the recoil-free fraction of Au in Au(10 Å)/Ni(10 Å) is larger than that of the bulk Au, suggesting the existence of the supermodulus effect in this superlattice. The197Au Mössbauer spectrum obtained from Au(5 Å)/Fe(8 Å) is entirely magnetic at 16 K, suggesting the existence of a magnetic hyperfine interaction at197Au nuclei through the transferred electron spin polarization.  相似文献   

2.
[Co(30 Å)/Pt(x Å)]20 multilayers with the Pt layer thicknesses varying from 5 Å to 20 Å were characterized structurally by high angle X-ray diffraction, X-ray reflectivity, X-ray absorption spectroscopy and magnetically by X-ray magnetic circular dichroism. It is found that the structure and magnetic properties of Pt have a strong correlation with the Pt layer thickness. The 20 Å thickness Pt layer is not almost influenced by the adjacent Co layer and the nearest neighbors are dominated by Pt-Pt shells. With decreasing Pt layer thickness, the nearest neighbors are gradually dominated by Pt-Co shells and the Pt-Co intermixing regions also remarkable increase at the interfaces, especially for the 5 Å thickness Pt layer. The orbital and spin magnetic moments as well as the ratio morb/mspin all decrease systematically with increasing Pt layer thickness, indicating that the interface atoms are polarized by direct Pt-Co hybridization, but that the adjacent layers are polarized by Pt-Pt interactions.  相似文献   

3.
Mössbauer parameters of 119Sn diamagnetic dopant cations in an antiferromagnetic compound having the ilmenite structure are for the first time reported. The spectra reveal a well resolved hyperfine splitting pattern of combined magnetic and quadrupole interactions (at 5 K, δ=0.19 mm/s, H1=52.5 kOe, eVZZQ3/2=−0.80 mm/s, θ≈0°). This spectral component whose contribution (A1=82%) represents more than four fifths of the total amount of the dopant (Sn/(Mn+Ti)=1/200) is assigned to Sn(IV) ions located in the bulk of MnTiO3, on the Mn(II) site, and with a Mn(II) vacancy in their nearest surrounding. Two spectral components with minor contributions are also observed: one of them (H2≈25 kOe, A2=8%) can be assigned to Sn(IV) ions, in the MnTiO3 lattice as well, on a site where they exhibit a weaker spin polarization (this site could be the Ti(IV) one) and the other (H3=0 kOe, A3=10%) to SnO2 or/and Ti1−xSnxO2 clusters. The Néel temperature of MnTiO3 probed by the 119Sn dopant (TN=69±2 K) agrees well with the values previously provided by ESR and antiferromagnetic resonance measurements. Variation of H1 with temperature follows close the Brillouin function for S=5/2. No perturbation appears in the Mössbauer spectra around T=90 K where a broad peak, characteristic of 2D magnetic interactions, is observed on the static magnetic susceptibility curve.  相似文献   

4.
A series of exchange-biased magnetic tunneling junctions (MTJs) were made in an in-plane deposition field (h) = 500 Oe. The deposition sequence was Si(1 0 0)/Ta(30 Å)/CoFeB(75 Å)/AlOx(d Å)/Co(75 Å)/IrMn(90 Å)/Ta(100 Å), where d was varied from 12 Å to 30 Å. The MTJ was formed by the cross-strip method with a junction area of 0.0225 mm2. The tunneling magnetoresistance (ΔR/R) of each MTJ was measured. The high-resolution cross-sectional transmission electron microscopic (HR X-TEM) image shows the very smooth interface and clear microstructure. X-ray diffraction (XRD) demonstrates that the IrMn layer of the MTJ exhibits a (1 1 1) texture. From the results (ΔR/R) increases from 17% to 50%, as d increases from 12 Å to 30 Å. The tunneling resistance (Ro) of these junctions ranges from 150 Ω to 250 Ω. The exchange-biasing field (Hex) of the MTJ is 50-95 Oe. Finally, the saturation resistance (Rs) was measured as a function of the angle (α) of rotation, where α is the angle between h and the in-plane saturation field (Hs) = 1.1 kOe. The following figure presents the dependence of Rs on α, instead of originally expected independence, the curve actually varies with a period of π.  相似文献   

5.
Magnetization and Mössbauer with 119Sn measurements have been performed in the system Co2-xNixTiSn. Transferred field distribution at the Sn site is very well consistent with the assumption, that only the nearest magnetic neighbours contribute to the field in contradiction with the Blandin-Campbell model, where the long range spin polarization of the conduction band occurs.  相似文献   

6.
We present systematic low temperature in situ119Sn Mössbauer effect (ME) studies in vapor quenched amorphous Mn x Sn1?x (0.09<x<0.95) alloys between 150 and 4.2 K. It is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions detected at the119Sn site. Combining the results of the concentration dependence of the transferred magnetic hf field and the ordering temperature with recent ac-magnetic susceptibility data reported on this system, a complete magnetic phase diagram is proposed. The effect of an external magnetic field (up to about 3 T) on the spin correlations in the spin-glass state is also discussed.  相似文献   

7.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

8.
The coercivity of a Co/Pt multilayer with out-of-plane anisotropy can be lowered greatly if it is grown onto an ultrathin NiO underlayer . By making use of this characteristic, a series of samples glass/NiO(10 Å)/[Co(4 Å)/Pt(5 Å)]3/Pt(x Å)/[Co(4 Å)/Pt(5 Å)]3 with different Pt spacer thickness have been prepared to determine the ferromagnetic (FM) coupling between Co layers across the Pt layer. The measurements of major and minor hysteresis loops have shown that the FM coupling between the top and bottom Co/Pt multilayers decreases monotonically with the Pt layer thickness and disappears above the Pt layer thickness of 40 Å. This thickness of 40 Å is much larger than that in the literature. In addition to the FM coupling between the top and bottom Co/Pt multilayers across the Pt spacer, there exists a weak biquadratic coupling, which induces the broad transition of the bottom Co/Pt multilayer.  相似文献   

9.
The transferred hyperfine fields at 119Sn, using Mössbauer spectroscopy are reported for the hexagonal B-35 compounds with a general formula Fe1?xMxSn, where MMn, Co and Ni. In these compounds, Sn atoms occupy two crystallographically inequivalent sites. For FeSn the observed spectrum consists of a quadrupole doublet and a magnetic pattern corresponding to 2(d) and 2(a) sites respectively. The data have been analysed to resolve the controversy regarding hyperfine parameters. On replacing Fe by Mn atoms, additional lines appear in the higher velocity region of the Mössbauer spectrum and the intensity of the nuclear Zeeman pattern increases at the expense of quadrupole doublet. The resulting Mössbauer spectra have been analysed by taking only the nearest neighbour interactions into account. This analysis shows that on replacing each Fe atom by a Mn atom, the hyperfine field at 1(a) Sn site increases by about 40 kOe and a field of about 35 kOe is produced at the 2(d) Sn sites. Further, from the nuclear Zeeman pattern for 2(d) sites, the sign of quadropole splitting for these sites could also be determined and was found to be positive. However, the substitution of Co and Ni in place of Fe atoms results in a broad unresolved pattern suggesting that the hyperfine field at the 1(a) sites decreases and a finite field develops at the 2(d) site. The origin of transferred hyperfine fields at the two inequivalent Sn sites is discussed, the magnetic transition temperatures of these compounds have been estimated and the magnetic moments of M-atoms have been inferred.  相似文献   

10.
Mössbauer Spectroscopy (MS) studies of119Sn were carried out in antiferromagnetic La2(Cu0.99Sn0.01)O4 (214) and in superconducting GdBa2(Cu0.99Sn0.01)3O7(123). Non-magnetic Sn4+ substitutes for Cu if the right procedure for diffusing119SnO2 in CuO is carried out. Studies performed in 214 show a large quadrupole splitting (QS) down to 120 K followed by an onset of a magnetic interaction reaching a saturation internal field ofH eff=8.7(5) kOe atT=30K. From the combined magnetic-quadrupole interaction the angle θ formed byq zz andH eff, the η-parameter, and the sign ofQS were deduced and information on the local spin structure is derived. Studies conducted with the 123 material (T c=90 K) reveal a broad unsplit line at temperatures down to 60 K followed by an abrupt onset of a magnetic interaction corresponding toH eff (Sn)=8.3(1) kOe. The hyperfine fielddecreases with decreasing temperature reaching 6.0(1) kOe at 16 K. The onset of the magnetic interaction at the119Sn nucleus is explained as due to a local depletion of holes following the Sn4+ doping and a consequent quenching of the magnetic fluctuations in its vicinity.  相似文献   

11.
The57Fe and119Sn Mossbauer spectra of ordered ferrites Li0.5Fe2.5−xAlxO4∶Sn for 0.8<x<1.0 (the compensation point region) have been studied. The spin glass type magnetic structure with the spin canting angle depending on temperature and aluminium concentration is established. Anomalies in the temperature dependence of the hyperfine magnetic field at tin nuclei have been found near the compensation point of the ferrites  相似文献   

12.
We studied magnetic and structural properties of granular CoxCu100−x (5<x<40 at%), Cu63Fe37 and Heusler-type Ni2MnGa glass-coated microwires. We found that the structure of Co–Cu microwires consists of two phases: fcc Cu for all the samples and fcc α-Co present for higher Co content. In the case of low Co content, Co atoms are distributed within the Cu matrix. The quantity and the size of grains strongly depend on the geometry of the microwire. Co–Cu and Fe–Cu microwires exhibited considerable magnetoresistance (MR). For CoxCu100−x microwires at x≥30 the anisotropic contribution to MR has been observed. Temperature dependences of magnetization measured without an external magnetic field (ZFC) and in the presence of a field (FC) show considerable difference below 20 K, indicating the presence of small α-Fe or Co grains embedded in the Cu matrix. Annealed Ni2MnGa microwires showed ferromagnetic behavior with Curie temperature about 330 K and polycrystalline structure with space group I4/mmm and lattice parameters a=3.75 Å and c=6.78 Å.  相似文献   

13.
(13)C nuclear magnetic resonance measurements were performed on κ-(BEDT-TTF)(2)Cu(NCS)(2), with the external field placed parallel to the quasi-2D conducting layers. The absorption spectrum is used to determine the electronic spin polarization M(s) as a function of external field H at a temperature T=0.35 K. A discontinuity in the derivative dM(s)/dH at an applied field of H(s)=213±3 kOe is taken as evidence for a Zeeman-driven transition within the superconducting state and stabilization of inhomogeneous superconductivity.  相似文献   

14.
The magnetic hyperfine field at an Fe site in the ferromagnetic alloy Fe0.475Co0.525 was measured using the Mössbauer effect. The value obtained at room temperature was 343 kOe. The hyperfine field at a substituted Cd impurity was measured by the method of time differential perturbed angular correlations. A single frequency was observed at room temperature, corresponding to a field of -177 kOe. Using the Mössbauer effect, the Sn site hyperfine field was measured in a sample in which 0.3 atomic percent of 119Sn had been substituted. The room temperature spectrum consisted of the superposition of a single line, together with a six-line hyperfine spectrum, corresponding to a field of 231 kOe. A phenomenological interpretation is proposed for Fe, Cd and Sn fields in the binary alloys of iron.  相似文献   

15.
It is observed that low-temperature magnetic properties (dependence of the magnetization on the cooling conditions and the presence of a maximum in the initial magnetic susceptibility) of Eu1− x AxMnO3 (A=Ca, Sr; x=0,0.3) samples are similar to those of spin glasses. However, there are also substantial differences: The magnetization depends on the cooling conditions right up to the maximum measurement fields H=45 kOe, and the temperature of T N of the maximum of the initial magnetic susceptibility is independent of the frequency of the ac magnetic field in which the susceptibility is measured. The magnetization isotherms for T<T N are a superposition of a linear part, characteristic for an antiferromagnet, and a small spontaneous part. For compositions containing Sr a maximum of the resistivity ρ (ρmax∼108 Ω ·cm) is observed near T N; in a 120 kOe magnetic field this maximum is lowered by four orders of magnitude and the temperature of the maximum is two times higher. In compositions with x=0.3 the paramagnetic Curie point is much higher than for the composition with x=0: θ=110 K (A=Ca), 175 K (A=Sr), and −100 K (x=0). These characteristic features of the magnetic and electric properties are explained by the existence of a magnetically two-phase state in this system, consisting of ferromagnetic clusters, in which the charge carriers are concentrated, embedded in an insulating antiferromagnetic matrix. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 5, 375–380 (10 March 1999)  相似文献   

16.
The influence of Si on the 57Fe and 119Sn site hyperfine (hf) fields and isomer shifts has been studied for a series of Fe-Si alloys containing up to ca. 13 at% Si and ca. 0.9 at% 119Sn. The observed changes of the hf fields and the isomer shifts have been interpreted as reflecting spin and charge density changes, respectively. The following correlations could be established: hf field H(0,0) vs. isomer shift IS(0,0) of undisturbed atomic neighbour configurations (0,0), average hf field, H? vs. average isomer shift, IS; average hf field, H? vs. average number of Si atoms within the first two neighbour shells, N?. Based on the f correlations the following hf coupling constants have been determined: a) the hf coupling constant for s-like itinerant electrons are 690 kOe/s-el for Fe and 2100 kOe/s-el for Sn, b) the average hf coupling constants are 660 kOe/s-el and 2100 kOe/s-el for Fe and Sn, respectively. From the correlation between H? and N? the changes in the spin or charge densities caused be one Si atom per unit cell, η, have been deduced as follows: η(Fe)=0.17 and η(Sn)=0.03. Comparison is made with previously reported equivalent results for the Fe-Al system.  相似文献   

17.
Spin injection into semiconductors has been a field of growing interest during recent years, because of the large possibilities in basic physics and for device applications that a controlled manipulation of the electrons spin would enable. However, it has proven very difficult to realize such a spin injector experimentally. Here we demonstrate electrical spin injection and detection in a GaAs/AlGaAs p-i-n diode using a semimagnetic II–VI semiconductor (Zn1 − xyBexMnySe) as a spin aligner. The degree of circular polarization of the electroluminescence from the diode is related to the spin polarization of the conduction electrons. Thus, it may be used as a detector for injected spin-polarized carriers. Our experimental results indicate a spin polarization of the injected electrons of up to 90% and are reproduced for several samples. The degree of optical polarization depends strongly on the Mn concentration and the thickness of the spin aligner. Electroluminescence from a reference sample without spin aligner as well as photoluminescence after unpolarized excitation in the spin aligner sample show only the intrinsic polarization in an external magnetic field due to the GaAs bandstructure. We can thus exclude side effects from Faraday effect or magnetic circular dichroism in the semimagnetic layer as the origin of the observed circularly polarized electroluminescence.  相似文献   

18.
The usefulness of Mössbauer spectroscopy for the investigation of magnetic multilayer systems is described. By applying 57Fe Mössbauer spectroscopy, the behavior of ultrathin magnetic layers, such as FCC-like Fe films on Cu(0 0 1), is studied. Position-specified (depth-selective) information is available by preparing samples in which monatomic 57Fe probe layers are placed at specific vertical positions, e.g. at interfaces or at the surface. As demonstrated for epitaxial chemically ordered Fe50Pt50 alloy films and polycrystalline nanostructured Tb/Fe multilayers, the Fe-spin structure can be determined directly, and a site-selective Fe-specific magnetic hysteresis loop can be traced in very-high-coercivity materials. For the studies of non-magnetic layers, on the other hand, hyperfine field observations by 197Au and 119Sn probes are worthwhile. Spin polarizations in Au layers penetrating from neighboring ferromagnetic 3D layers are estimated 197Au from Mössbauer spectra and are also studied by inserted 119Sn probes in Au/3D multilayers. In the Sn spectra for Cr/Sn multilayers, it was found that remarkably large spin polarization is penetrating into Sn layers from a contacting Cr layer, which suggests that Cr atoms in the surface layer have a ferromagnetic alignment.  相似文献   

19.
The results of investigating the temperature dependence of the resistivity, the differential magnetic susceptibility, and the magnetoresistance of a partially substituted perovskite Sm1−x SrxMnO3 (x=0.16–0.4) are presented. Colossal intrinsic magnetoresistance, reaching 90% in an external magnetic field of 30 kOe, is discovered in the compound with x=0.30 at 77 K. Fiz. Tverd. Tela (St. Petersburg) 39, 1831–1832 (October 1997)  相似文献   

20.
We have investigated the effect of bias voltage on sheet resistance, surface roughness and surface coverage of Co/NiOx magnetic bilayer. In addition, interface topography and corrosion resistance of the Ta/Co/Cu/Co/NiOx/Si(1 0 0) system have been studied for Co layers deposited at an optimum bias voltage. Atomic force microscopy (AFM) and four point probe sheet resistance (Rs) measurement have been used to determine surface and electrical properties of the sputtered Co layer at different bias voltages ranging from 0 to −80 V. The Co/NiOx bilayer exhibits a minimum surface roughness and low sheet resistance value with a maximum surface coverage at Vb=−60 V resulted in a slight increase of magnetic resistance and its sensitivity for the Co/Cu/Co/NiOx/Si(1 0 0) magnetic multilayers, as compared with the same magnetic multilayers containing unbiased Co layers. The presence of Ta protection layer improves the corrosion resistance of the multilayers by three orders of magnitude in a humid environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号