首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A truncated permutation matrix polytope is defined as the convex hull of a proper subset of n-permutations represented as 0/1 matrices. We present a linear system that models the coNP-complete non-Hamilton tour decision problem based upon constructing the convex hull of a set of truncated permutation matrix polytopes. Define polytope Pn–1 as the convex hull of all n-1 by n-1 permutation matrices. Each extreme point of Pn–1 is placed in correspondence (a bijection) with each Hamilton tour of a complete directed graph on n vertices. Given any n vertex graph Gn, a polynomial sized linear system F(n) is constructed for which the image of its solution set, under an orthogonal projection, is the convex hull of the complete set of extrema of a subset of truncated permutation matrix polytopes, where each extreme point is in correspondence with each Hamilton tour not in Gn. The non-Hamilton tour decision problem is modeled by F(n) such that Gn is non-Hamiltonian if and only if, under an orthogonal projection, the image of the solution set of F(n) is Pn–1. The decision problem Is the projection of the solution set of F(n)=Pn–1? is therefore coNP-complete, and this particular model of the non-Hamilton tour problem appears to be new.Dedicated to the 250+ families in Kelowna BC, who lost their homes due to forest fires in 2003.I visited Ted at his home in Kelowna during this time - his family opened their home to evacuees and we shared happy and sad times with many wonderful people.  相似文献   

2.
We consider a class of random matrix ensembles which can be constructed from the random permutation matrices by replacing the nonzero entries of the n×n permutation matrix matrix with M×M diagonal matrices whose entries are random Kth roots of unity or random points on the unit circle. Let X be the number of eigenvalues lying in a specified arc I of the unit circle, and consider the standardized random variable (XE[X])/(Var(X))1/2. We show that for a fixed set of arcs I 1,...,I N , the corresponding standardized random variables are jointly normal in the large n limit, and compare the covariance structures which arise with results for other random matrix ensembles.  相似文献   

3.
A weighing matrix of order n and weight m2 is a square matrix M of order n with entries from {-1,0,+1} such that MMT=m2I where I is the identity matrix of order n. If M is a group matrix constructed using a group of order n, M is called a group weighing matrix. Recently, group weighing matrices were studied intensively, especially when the groups are cyclic and abelian. In this paper, we study the abelian group weighing matrices that are symmetric, i.e.MT=M. Some new examples are found. Also we obtain a few exponent bounds on abelian groups that admit symmetric group weighing matrices. In particular, we prove that there is no symmetric abelian group weighing matrices of order 2pr and weight p2 where p is a prime and p≥ 5.Communicated by: K.T. Arasu  相似文献   

4.
A 0–1 matrix A is said to avoid a forbidden 0–1 matrix (or pattern) P if no submatrix of A matches P, where a 0 in P matches either 0 or 1 in A. The theory of forbidden matrices subsumes many extremal problems in combinatorics and graph theory such as bounding the length of Davenport–Schinzel sequences and their generalizations, Stanley and Wilf’s permutation avoidance problem, and Turán-type subgraph avoidance problems. In addition, forbidden matrix theory has proved to be a powerful tool in discrete geometry and the analysis of both geometric and non-geometric algorithms.Clearly a 0–1 matrix can be interpreted as the incidence matrix of a bipartite graph in which vertices on each side of the partition are ordered. Füredi and Hajnal conjectured that if P corresponds to an acyclic graph then the maximum weight (number of 1s) in an n×n matrix avoiding P is O(nlogn). In the first part of the article we refute of this conjecture. We exhibit n×n matrices with weight Θ(nlognloglogn) that avoid a relatively small acyclic matrix. The matrices are constructed via two complementary composition operations for 0–1 matrices. In the second part of the article we simplify one aspect of Keszegh and Geneson’s proof that there are infinitely many minimal nonlinear forbidden 0–1 matrices. In the last part of the article we investigate the relationship between 0–1 matrices and generalized Davenport–Schinzel sequences. We prove that all forbidden subsequences formed by concatenating two permutations have a linear extremal function.  相似文献   

5.
Let R be a ring and β×α(R) (? β×α(R)) the set of all β × α full (row finite) matrices over R where α and β ≥ 1 are two cardinal numbers. A left R-module M is said to be “injective relative” to a matrix A ? ? β×α(R) if every R-homomorphism from R (β) A to M extends to one from R (α) to M. It is proved that M is injective relative to A if and only if it is A-pure in every module which contains M as a submodule. A right R-module N is called flat relative to a matrix A ?  β×α(R) if the canonical map μ: N? R (β) A → N α is a monomorphism. This extends the notion of (m, n)-flat modules so that n-projectivity, finitely projectivity, and τ-flatness can be redefined in terms of flatness relative to certain matrices. R is called left coherent relative to a matrix A ?  β×α(R) if R (β) A is a left R-ML module. Some results on τ-coherent rings and (m, n)-coherent rings are extended.  相似文献   

6.
We cryptanalyse here two variants of the McEliece cryptosystem based on quasi-cyclic codes. Both aim at reducing the key size by restricting the public and secret generator matrices to be in quasi-cyclic form. The first variant considers subcodes of a primitive BCH code. The aforementioned constraint on the public and secret keys implies to choose very structured permutations. We prove that this variant is not secure by producing many linear equations that the entries of the secret permutation matrix have to satisfy by using the fact that the secret code is a subcode of a known BCH code. This attack has been implemented and in all experiments we have performed the solution space of the linear system was of dimension one and revealed the permutation matrix. The other variant uses quasi-cyclic low density parity-check (LDPC) codes. This scheme was devised to be immune against general attacks working for McEliece type cryptosystems based on LDPC codes by choosing in the McEliece scheme more general one-to-one mappings than permutation matrices. We suggest here a structural attack exploiting the quasi-cyclic structure of the code and a certain weakness in the choice of the linear transformations that hide the generator matrix of the code. This cryptanalysis adopts a polynomial-oriented approach and basically consists in searching for two polynomials of low weight such that their product is a public polynomial. Our analysis shows that with high probability a parity-check matrix of a punctured version of the secret code can be recovered with time complexity O(n 3) where n is the length of the considered code. The complete reconstruction of the secret parity-check matrix of the quasi-cyclic LDPC codes requires the search of codewords of low weight which can be done with about 237 operations for the specific parameters proposed.  相似文献   

7.
. A type II matrix is an n×n matrix W with non-zero entries W i,j which satisfies , i, j=1, …, n. Two type II matrices W, W′ are said to be equivalent if W′=P 1Δ1 WΔ2 P 2 holds for some permutation matrices P 1, P 2 and for some non-singular diagonal matrices Δ1, Δ2. In the present paper, it is shown that there are up to equivalence exactly three type II matrices in M 5(C). Received: August 15, 1996 Revised: May 16, 1997  相似文献   

8.
It is proved that if we approximate the Euclidean ballB n in the Hausdorff distance up toɛ by a Minkowski sum ofN segments, then the smallest possibleN is equal (up to a possible logarithmic factor) toc(n)ε −2(n−1)/(n+2). A similar result is proved ifB n is replaced by a general zonoid inR n .  相似文献   

9.
In this paper we consider the problem of decomposing a simple polygon into subpolygons that exclusively use vertices of the given polygon. We allow two types of subpolygons: pseudo-triangles and convex polygons. We call the resulting decomposition PT-convex. We are interested in minimum decompositions, i.e., in decomposing the input polygon into the least number of subpolygons. Allowing subpolygons of one of two types has the potential to reduce the complexity of the resulting decomposition considerably.The problem of decomposing a simple polygon into the least number of convex polygons has been considered. We extend a dynamic-programming algorithm of Keil and Snoeyink for that problem to the case that both convex polygons and pseudo-triangles are allowed. Our algorithm determines such a decomposition in O(n3) time and space, where n is the number of the vertices of the polygon.  相似文献   

10.
Summary It was recently shown that the inverse of a strictly ultrametric matrix is a strictly diagonally dominant Stieltjes matrix. On the other hand, as it is well-known that the inverse of a strictly diagonally dominant Stieltjes matrix is a real symmetric matrix with nonnegative entries, it is natural to ask, conversely, if every strictly diagonally dominant Stieltjes matrix has a strictly ultrametric inverse. Examples show, however, that the converse is not true in general, i.e., there are strictly diagonally dominant Stieltjes matrices in n×n (for everyn3) whose inverses are not strictly ultrametric matrices. Then, the question naturally arises if one can determine which strictly diagonally dominant Stieltjes matrices, in n×n (n3), have inverses which are strictly ultrametric. Here, we develop an algorithm, based on graph theory, which determines if a given strictly diagonally dominant Stieltjes matrixA has a strictly ultrametric inverse, where the algorithm is applied toA and requires no computation of inverse. Moreover, if this given strictly diagonally dominant Stieltjes matrix has a strictly ultrametric inverse, our algorithm uniquely determines this inverse as a special sum of rank-one matrices.Research supported by the National Science FoundationResearch supported by the Deutsche Forschungsgemeinschaft  相似文献   

11.
We consider the following sparse representation problem: represent a given matrix X∈ℝ m×N as a multiplication X=AS of two matrices A∈ℝ m×n (mn<N) and S∈ℝ n×N , under requirements that all m×m submatrices of A are nonsingular, and S is sparse in sense that each column of S has at least nm+1 zero elements. It is known that under some mild additional assumptions, such representation is unique, up to scaling and permutation of the rows of S. We show that finding A (which is the most difficult part of such representation) can be reduced to a hyperplane clustering problem. We present a bilinear algorithm for such clustering, which is robust to outliers. A computer simulation example is presented showing the robustness of our algorithm.  相似文献   

12.
We say a 0–1 matrix A avoids a matrix P if no submatrix of A can be transformed into P by changing some ones to zeroes. We call P an m-tuple permutation matrix if P can be obtained by replacing each column of a permutation matrix with m copies of that column. In this paper, we investigate n×n matrices that avoid P and the maximum number ex(n,P) of ones that they can have. We prove a linear bound on ex(n,P) for any 2-tuple permutation matrix P, resolving a conjecture of Keszegh [B. Keszegh, On linear forbidden matrices, J. Combin. Theory Ser. A 116 (1) (2009) 232–241]. Using this result, we obtain a linear bound on ex(n,P) for any m-tuple permutation matrix P. Additionally, we demonstrate the existence of infinitely many minimal non-linear patterns, resolving another conjecture of Keszegh from the same paper.  相似文献   

13.
Given a linear transformation L:? n →? n and a matrix Q∈? n , where ? n is the space of all symmetric real n×n matrices, we consider the semidefinite linear complementarity problem SDLCP(L,? n +,Q) over the cone ? n + of symmetric n×n positive semidefinite matrices. For such problems, we introduce the P-property and its variants, Q- and GUS-properties. For a matrix AR n×n , we consider the linear transformation L A :? n →? n defined by L A (X):=AX+XA T and show that the P- and Q-properties for L A are equivalent to A being positive stable, i.e., real parts of eigenvalues of A are positive. As a special case of this equivalence, we deduce a theorem of Lyapunov. Received: March 1999 / Accepted: November 1999?Published online April 20, 2000  相似文献   

14.
Let f(n) be defined on the set N is even, and f(n)=3n+1 if nie: is odd. A well-known conjecture in number theory asserts that for every n the sequence of iterates eventually reaches the cycle (4,2,1). We recast the conjecture in terms of a denumerable Markov chain with transition matrix P. Assuming that (4,2,1) is the only cycle, but allowing for the possibility of unbounded trajectories, we establish the complete structure of a particular generalized inverse X of I?P and show that the entries of X describe the trajectories and "total stopping times" of integers n. Moreover, the infinite matrix X satisfies properties which, in the case of finite matrices, are the defining properties of the unique group generalized inverse (I?P)#. The result extends to dynamical systems on ? consisting of points that are fixed, eventually fixed, or have unbounded trajectories. As a consequence, we obtain a generalized inverse that encodes the dynamics of such systems, and for cases in which known general criteria for the existence of (I?P)# do not apply.  相似文献   

15.
Yang Lu and Zhang Jinh-Zhong generalized the Neuberg-Pedoe inequality toR n by applying Maclaurin's inequality to a determinant equation. We noticed that a simple proof of an equivalent formula follows from their positive definite matrices alone. The resulting formula also has a simple matrix formulation.  相似文献   

16.
Convergence is established for iterative algorithms for the solution of the nonsymmetric linear complementarity problem of findingz such thatMz+q0,z0,z T(Mz+q)=0, whereM is a givenn×n real matrix, not necessarily symmeetric, andq is a givenn-vector. It is first shown that, if the spectral radius of a matrix related toM is less than one, then the iterates generated by the general algorithm converge to a solution of the linear complementarity problem. It turns out that convergence properties are quite similar to those of linear systems of equations. As specific cases, two important classes of matrices, Minkowski matrices and quasi-dominant diagonal matrices, are shown to satisfy this convergence condition.The author is grateful to Professor O. L. Mangasarian and the referees for their substantive suggestions and corrections.  相似文献   

17.
18.
It is proved that the discriminant of n × n real symmetric matrices can be written as a sum of squares, where the number of summands equals the dimension of the space of n‐variable spherical harmonics of degree n. The representation theory of the orthogonal group is applied to express the discriminant of 3 × 3 real symmetric matrices as a sum of five squares and to show that it cannot be written as the sum of less than five squares. It is proved that the discriminant of 4 × 4 real symmetric matrices can be written as a sum of seven squares. These improve results of Kummer from 1843 and Borchardt from 1846. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
We give a necessary and sufficient condition for an n×n (0,1) matrix (or more generally, an n×n nonnegative matrix) to be permutation equivalent to a primitive matrix. More precisely, except for two simple permutation equivalent classes of n×n (0,1) matrices, each n×n (0,1) matrix having no zero row or zero column is permutation equivalent to some primitive matrix. As an application, we use this result to characterize the subsemigroup of Bn (Bn is the multiplicative semigroup of n×n Boolean matrices) generated by all the primitive matrices and permutation matrices. We also consider a more general problem and give a necessary and sufficient condition for an n×n nonnegative matrix to be permutation equivalent to an irreducible matrix with given imprimitive index.  相似文献   

20.
In this small note, we observe some extremal behaviors of Murty's least index method for solving linear complementarity problems. In particular, we show that the expected number of steps for solving Murty's exponential example with a random permutation of variable indices is exactly equal ton, wheren is the size of the input square matrix.Corresponding author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号