首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Degrees of nonlinearity in forbidden 0–1 matrix problems
Authors:Seth Pettie
Institution:aUniversity of Michigan, Department of EECS, 2260 Hayward St, Ann Arbor, MI 48109, United States
Abstract:A 0–1 matrix A is said to avoid a forbidden 0–1 matrix (or pattern) P if no submatrix of A matches P, where a 0 in P matches either 0 or 1 in A. The theory of forbidden matrices subsumes many extremal problems in combinatorics and graph theory such as bounding the length of Davenport–Schinzel sequences and their generalizations, Stanley and Wilf’s permutation avoidance problem, and Turán-type subgraph avoidance problems. In addition, forbidden matrix theory has proved to be a powerful tool in discrete geometry and the analysis of both geometric and non-geometric algorithms.Clearly a 0–1 matrix can be interpreted as the incidence matrix of a bipartite graph in which vertices on each side of the partition are ordered. Füredi and Hajnal conjectured that if P corresponds to an acyclic graph then the maximum weight (number of 1s) in an n×n matrix avoiding P is O(nlogn). In the first part of the article we refute of this conjecture. We exhibit n×n matrices with weight Θ(nlognloglogn) that avoid a relatively small acyclic matrix. The matrices are constructed via two complementary composition operations for 0–1 matrices. In the second part of the article we simplify one aspect of Keszegh and Geneson’s proof that there are infinitely many minimal nonlinear forbidden 0–1 matrices. In the last part of the article we investigate the relationship between 0–1 matrices and generalized Davenport–Schinzel sequences. We prove that all forbidden subsequences formed by concatenating two permutations have a linear extremal function.
Keywords:Forbidden matrix  Turan number  Davenport&ndash  Schinzel sequence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号