首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

2.
采用熔融淬冷法制备得到透明的Tm~(3+)/Er~(3+)/Yb~(3+)掺杂镓锗钠玻璃。对比研究了808 nm和980 nm激发下Tm_2O_3含量对样品可见-红外光学光谱特性的影响。结合稀土离子能级结构,分析了Tm~(3+)、Er~(3+)和Yb~(3+)离子之间的能量传递机制。结果表明:在808 nm和980 nm的激发下,Tm~(3+)/Er~(3+)/Yb~(3+)掺杂样品中均观察到了473,655,521,544 nm的蓝、红和绿光。在808 nm激发下,随着Tm~(3+)浓度的增加,Tm~(3+):1 800 nm和Er~(3+):1 530 nm发射强度的比率I1.8/I1.53逐渐增大。由于在Tm~(3+)和Er~(3+)间的能量传递有效地改变了红光和绿光的发射强度,473,521,655 nm的发光强度呈现先升高再降低的趋势,在Tm_2O_3掺杂摩尔分数为0.3%时达到最大值。而在980 nm激发下,由于Yb~(3+)对Er~(3+)和Tm~(3+)的能量传递起主要作用,使得其上转换红光(655 nm)、绿光(521 nm和544 nm)和蓝光(473 nm)的发光强度高于808 nm激发下的上转换发光。  相似文献   

3.
Er3+/Yb3+共掺杂氧氟硅酸盐玻璃的上转换发光   总被引:8,自引:5,他引:3  
研究了Er^3 /Yb^3 共掺氧氟硅酸盐玻璃的吸收光谱、上转换光谱和拉曼光谱。分析了氧氟硅酸盐玻璃中Yb”敏化Er^3 的上转换发光机理。结果表明:通过975nm的激光二极管激发,在室温下同时观察到蓝光(408nm)、绿光(529nm和545nm)和红光(667nm),分别是由于Er^3 离子。H9/2→^4I15/2,H11/2→^4I15/2,H3/2→^4I15/2和H9/2→^4I15/2跃迁。随Yb2O3浓度的增加。Yb^3 对Er^3 的能量转移增强,因此蓝光、绿光和红光的发光强度都增强,强烈的绿光和红光激发是由于双光子吸收过程,而微弱的蓝光是由于三光子吸收过程。拉曼光谱发现,对Er^3 离子在氧氟硅酸盐玻璃中的上转换发光。玻璃结构中的PbF2起到重要作用。  相似文献   

4.
X3MgSi2O8: Eu2+, Mn2+ (X=Ba, Sr, Ca) phosphors with the mean particle size of 200 nm and the spherical shape are synthesized through combustion method. They show three emission colors under near-ultraviolet light: the blue and green colors from Eu2+ ions and the red color from Mn2+ ions. Three emission bands show the different emission colors with changing X2+ cations. These color shifts are discussed in terms of two competing factors of the crystal field strength and the covalency. These phosphors with maximum excitation of around 375 nm can be applied as color-tunable phosphors for white-light-emitting diode based on ultraviolet/phosphor technology.  相似文献   

5.
Synthesis of Y3NbO7:Er powders with the aid of Li2SO4 flux is reported and spectroscopic properties of the resultant powders are presented. The dopant content varied in the range of 0.1-15 at%. The materials crystallized in the fluorite-type cubic structure in which all the metal ions—Y, Nb, and Er—randomly occupy the same site offered by the host lattice and the O-vacancy is also randomly distributed within the metal surrounding. Transmission electron microscopy images revealed that the agglomeration of particles is very low and the sizes of the grains are around 500 nm. Selected area electron diffraction patterns proved that each grain is monocrystalline. Absorption, excitation, and emission spectra are characterized by relatively broad structures related to the Er3+ ion. The broadening results from some inhomogeneity of the activator ion surroundings related to the specific structure of the host lattice. When the Er content is only 0.1% both photoluminescence and up-converted emission are dominated by a green luminescent band around 550 nm. However, the efficiency of up-conversion is very low . With increasing concentration of the dopant, a red band located around 665 nm appears and becomes systematically stronger. In up-converted emission, the intensity of the red band surpasses the green one when the Er concentration exceeds 5%. For low concentrations, the up-conversion occurs through a sequential absorption of two infrared (IR) (980 nm) photons from the excitation beam by Er3+ ion through excited-state absorption mechanism. For higher concentrations, the energy transfer between two neighboring excited Er ions plays dominant role. Surprisingly, the mechanism of up-converted low-intensity luminescence from 2H11/2 state seems to diverge from the mechanism characteristic for the 4S3/2 level, which conclusion comes from different slopes of the double-log relationships.  相似文献   

6.
Zinc oxide (ZnO) and Er-doped zinc oxide (ZnO:Er) thin films were formed by pulsed laser deposition, and characterized by photoluminescence (PL) and X-ray diffraction (XRD) in order to clarify the 1.54 μm emission mechanism in the ZnO:Er films. Er ions were excited indirectly by the 325 nm line of a He-Cd laser, and the comparison of the ultraviolet to infrared PL data of ZnO and ZnO:Er films showed that the 1.54 μm emission of Er3+ in ZnO:Er film appears at the expense of the band edge emission and the defect emission of ZnO. The crystallinity of the films was varied with the substrate temperature and post-annealing, and it was found that the intensity of the 1.54 μm emission is strongly related with the crystallinity of the films. There are three processes leading to the 1.54 μm emission; absorption of excitation energy by the ZnO host, energy transfer from ZnO to Er ions, and radiative relaxation inside Er ions, and it is suggested that the crystallinity plays an important role in the first two processes.  相似文献   

7.
RE/Yb co-doped Y2O3 transparent ceramics (RE=Er, Ho, Pr, Tm) were fabricated and characterized from the point of up-conversion luminescence. All the samples exhibit high transparence not only in near-infrared band (NIR) band but also in visible region, which ensures the output of the up-conversion luminescence. Under 980 nm excitation, green and red emissions were observed in Er, Yb:Y2O3 transparent ceramic, while green emission was detected in Ho, Yb and Pr, Yb co-doped Y2O3 transparent ceramics. In Tm, Yb co-doped Y2O3 ceramic, very intense blue up-conversion luminescence was detected. The dependence of up-conversion emission intensity on the pumping power was measured for each RE/Yb co-doped Y2O3 transparent ceramic, and the up-conversion mechanism was discussed in detail. Meanwhile, the energy transfer efficiency was calculated.  相似文献   

8.
Er/Tm/Yb codoped Y2O3 nanocrystals and Er/Tm/Yb/Li codoped Y2O3 nanocrystals have been synthesized by sol-gel method, bright white light emission has been observed at 976 nm excitation. The blue, green, and red emissions, respectively, arise from the transitions 1G4 → 3H6 of Tm3+, 2H11/2/4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 of Er3+ ion. Moreover, after doping Li+ ions into Er/Tm/Yb codoped Y2O3 nanocrystals, the white light emission increase greatly. CIE coordinate of Er/Tm/Yb/Li codoped Y2O3 nanocrystals is X = 0.32 and Y = 0.36 at 10 W/cm2 excitation, which is very close to the standard equal energy white light illuminate (X = 0.33, Y = 0.33).  相似文献   

9.
The strong 479.1 nm blue cooperative upconversion luminescence of ytterbium Yb3+ ion doped oxyfluoride nanophase vitroceramics (Yb:FOV) is studied in this article. It is found that the 479.1 nm blue cooperative upconversion luminescence strength of Yb(5):FOV is 230 times greater than that of fluoride glass Yb(3):ZBLAN. The large enhancement on cooperative upconversion blue luminescence of this article results from the comprehensive improvement on the aspects of better coupled chance of the Yb3+-Yb3+ cluster, less cross-relaxation, better concentration contribution of Yb3+ activator, non-saturation, and better upconversion luminescence efficiency.  相似文献   

10.
The time resolved emission spectrum of the blue band of Ti:sapphire laser crystal has been investigated as a function of temperature (range 10–290 K) and UV (266 nm) laser excitation intensity. Two blue emission bands, centred at 420 nm and 460 nm, have been detected. The 420 nm band is attributed to Ti4+ centres whereas the 460 nm one is proposed to be due to Ti3+ ions. The evolution of the emission spectrum vs the UV excitation intensity has shown that the concentration of Ti4+ centres is increased under UV irradiation at the cost of the centres responsible for the 460 nm band.  相似文献   

11.
Zinc oxide doped with Al (AZO) thin films were prepared on borosilicate glass substrates by dip and dry technique using sodium zincate bath. Effects of doping on the structural and optical properties of ZnO film were investigated by XRD, EPMA, AFM, optical transmittance, PL and Raman spectroscopy. The band gap for ZnO:Al (5.0 at. wt.%) film was found to be 3.29 eV compared with 3.25 eV band gap for pure ZnO film. Doping with Al introduces aggregation of crystallites to form micro-size clusters affecting the smoothness of the film surface. Al3+ ion was found to promote chemisorption of oxygen into the film, which in turn affects the roughness of the sample. Six photoluminescence bands were observed at 390, 419, 449, 480, 525 and 574 nm in the emission spectra. Excitation spectra of ZnO film showed bands at 200, 217, 232 and 328 nm, whereas bands at 200, 235, 257 and 267 nm were observed for ZnO:Al film. On the basis of transitions from conduction band or deep donors (CB, Zni or VOZni) to valence band and/or deep acceptor states (VB, VZn or Oi or OZn), a tentative model has been proposed to explain the PL spectra. Doping with Al3+ ions reduced the polar character of the film. This has been confirmed from laser Raman studies.  相似文献   

12.
Alkaline-earth silicate phosphors CaMgSi2xO6+2x:Eu2+ (1.00?x?1.20) were prepared by traditional solid-state reaction. The phosphors showed an intense blue emission centered around 453 nm, with both 254 and 147 nm excitations. The host absorption below 200 nm in the excitation spectra consisted of two bands around 160 and 190 nm. The band around 160 nm was ascertained to be associated with the SiO4-tetrahedra and MgO6-polyhedra, and that around 190 nm was due to the CaO8-polyhedra or some impurities. The incorporation of excess Si of less than 15% would not lead to formation of impurities and the results indicated that an appropriate Si excess could improve the Photoluminescence (PL) intensity in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions  相似文献   

13.
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. CO compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented.  相似文献   

14.
The optical absorption (OA) and photoluminescence (hereafter referred to as luminescence) studies were made on CaF2:Dy:Pb:Na single crystals (Dy—0.005 at%, Pb—0.188 at% and Na—0.007 at%) before and after γ-irradiation. The unirradiated crystal exhibited a strong OA band around 6.36 eV attributed to the ‘A’ band absorption of Pb2+ ions. The γ-irradiated crystal exhibited OA bands around 2.06, 3.28, 3.75 (broad shoulder) and 2.48 eV. The first three bands could be tentatively attributed to MNa centre when compared with that of the coloured CaF2:Na. The origin of 2.48 eV band was not explicitly known. Luminescence emission and excitation of Pb2+ and Dy3+ ions were negligible in the unirradiated crystal. Irradiated crystal exhibited a strong excitation spectrum with overlapping bands, due to different colour centres, in the UV-vis region for the 2.15 eV emission characteristic of Dy3+ ion. When excited, the absorbed energy (may be a part) was transferred from a colour centre to nearby Dy3+ ions and Dy3+ characteristic emission was observed. Exciting the irradiated crystal around 3.28 eV yielded emission at 2.56, 2.15 and 1.76 eV. The first two emission bands were due to Dy3+ ions. The excitation spectrum for the 1.76 eV emission showed two prominent bands around 2.02 and 3.08 eV and hence the emission was attributed to the MNa centre. The luminescence mechanism was described.  相似文献   

15.
A detailed study of the spectroscopic properties of the PbF2+GeO2:Er2O3 vitroceramic sample upon 650 nm excitation was investigated. The absorption, emission, excitation spectra, and time-resolved spectra have been measured. The up-conversion of red radiation (650 nm) into UV (368 nm and 379 nm), blue (406.8 nm) and green (522 nm and 540 nm) emissions is observed for Er3+ ions in the sample. The up-conversion process involves a two-photon absorption for the violet, blue, and green emission bands. A three-photon process happens for another violet (379 nm) band.  相似文献   

16.
Inverse opal photonic crystals of Y b3+, Er3+ co-doped TiO2 (TiO2:Yb, Er) were prepared by a self-assembly technique in combination with a sol-gel method. Upconversion (UC) luminescence properties of the inverse opals were investigated. The results show that photonic bandgap has significant influence on the upconversion emission of the TiO2:Yb, Er inverse opal photonic crystals. Significant suppression of the upconversion emission was detected if the photonic bandgap overlapped with the Er3+ ions emission band.  相似文献   

17.
The ytterbium ions doped MO-Al2O3 (M=Ca, Sr and Ba) phosphors have been synthesized through combustion technique and their up and down conversion fluorescence properties have been studied and compared. The samples were calcinated at different temperatures and their FTIR and XRD spectra have shown a close relationship. With 976 nm excitation all these phosphors show cooperative upconversion emission at 488 nm from the pairs of two Yb3+ ions along with an unexpected broad upconversion band in the blue green region and has been assigned to arise from the defect centers. Contrary to this upconversion emission, calcium aluminate phosphor exhibits bright and very broad down-conversion fluorescence (FWHM≈160 nm) upon UV (266 nm) excitation due to Yb2+ ions. The inter-conversion between the 3+ and 2+ valence states of Yb ion has been observed on calcinations of samples in open atmosphere and has been correlated to the emission properties. The Yb2+ ions containing calcium aluminate phosphor has been found suitable for producing broad band light in the visible region (white light). Lifetime of the emitting states of Yb3+ and Yb2+ ions have also been measured and discussed.  相似文献   

18.
The temperature dependence of the luminescence properties of nanocrystalline CdS/Mn2+ particles is investigated. In addition to an orange Mn2+ emission around 585 nm a red defect related emission around 700 nm is observed. The temperature quenching of both emissions is similar (Tq≈100 K). For the defect emission the reduction in the lifetime follows the temperature dependence of the intensity. For the Mn2+ emission however, the intensity decreases more rapidly than the lifetime with increasing temperature. To explain these observations a model is proposed in which the Mn2+ ions are excited via an intermediate state involving shallowly trapped (≈40 meV) charge carriers.  相似文献   

19.
Optical and electron paramagnetic resonance study have been carried out on BaY2F8 single crystals doped with Yb ions at 0.5 and 10 mol%. The crystals have been obtained using the Czochralski method modified for fluoride crystal growth. Optical transmission measurements in the range of 190-3200 nm and photoluminescence measurements were carried out at room temperature. Absorption spectra of BaY2F8 single crystals doped with Yb due to the 2F7/22F5/2 transitions have been observed in the 930-980 nm range. To analyze the possible presence of Yb2+ ions in the investigated crystals, irradiation with γ-quanta with a dose of 105 Gy have been performed. The observed photoluminescence bands show usual emission in IR and other one in VIS, being an effect of cooperative emission of Yb3+ ions and energy up-conversion transitions of photons from IR to UV-vis(visible) due to hoping process between energy levels of paired Yb3+ and Er3+, where Er3+ ions are unintentional dopants. The EPR spectra of BaY2F8:Yb 10 mol% consist of many overlapping lines. They have been analyzed in terms of spin monomers, pairs, and clusters. The angular dependence of the resonance lines positions have been studied also to find the location of coupled ytterbium ions in the crystal structure.  相似文献   

20.
We have systematically investigated the origin and optical properties of the X-ray-induced colour centres based on the blue and red radiophotoluminescence (RPL) in a silver-activated phosphate glass. The induced-absorption band was decomposed into six Gaussian bands on the basis of its strong analogy with silver-activated sodium chloride. We have ascribed these bands to Ag0, Ag2+, and other silver ion species by means of optical and thermal measurements such as colour centre formation and dissolution by highly successive femtosecond-pulse irradiation, excited-state lifetime and thermal annealing characteristics. The data confirmed that the blue RPL at 450 nm could be attributed to the 270 and 345 nm bands due to the and Ag0 centres, respectively, and that the orange RPL at 560 nm was associated with the 308 nm band due to the Ag2+ centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号