首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
分子印迹模拟酶是应用分子印迹技术合成的对目标分子具有特异性催化活性的聚合物,具有良好的化学和物理稳定性、结构预定性以及实用性。本文主要介绍了分子印迹模拟酶的构建策略,包括印迹过渡态类似物、印迹底物或底物类似物和其他构建途径;探讨了分子印迹模拟酶的制备方法,总结了分子印迹模拟酶在催化反应方面的应用,涉及有机合成催化、食品安全危害物分解、环境污染物降解和临床医学检验等。  相似文献   

2.
传统的Kemp消除反应可以通过氢氧化钾和三烷基胺等碱性物质,催化底物苯并异恶唑开环生成产物2-氰基苯酚.三十年来, Kemp消除反应一直被用作模式反应来设计或定向进化新型生物酶催化剂,从而揭示未知的酶催化机制的复杂性,增强对酶催化机制的理解.目前科研人员使用不同的蛋白作为骨架设计能够高效催化Kemp消除反应的人工酶.例如Hilvert及Mayo等基于人工酶HG3.17,设计获得了Kemp消除酶,可以催化5-硝基苯并异恶唑生成产物2-氰基-4-硝基苯酚.通过17轮定向进化获得的最终突变体展现出与天然酶相近的催化活性(kcat/Km=230000 L mol-1 s-1; kcat=700 s-1).该研究不仅表明蛋白质工程可以进化出高效的生物酶,量子力学/分子力学(QM/MM)分析还揭示了突变体催化活性提高的分子机制.与酸碱催化的Kemp消除反应不同,最近Korendovych等报道以肌红蛋白作为骨架基于氧化还原机制的Kemp消除反应,通过开发一种独特的基于...  相似文献   

3.
在水溶液及胶束介质中分别研究了血红蛋白(hemoglobin,Hb),β环糊精氯化血红素(βCDhemin)和氯化血红素(hemin)作为过氧化物模拟酶对隐性亮绿(recessivebrilliantgreen,RBG)H2O2(或溶解氧)体系的催化特性。在Tween80存在下,通过测定米氏常数Km和Vmax,比较了酶催化活性的大小,结果表明催化活性Hb>βCDhemin>hemin。分别研究了辣根过氧化物酶(horseradishperoxidase,HRP),βCDhemin,hemin和四羧基苯基锰卟啉(MnTCPP)对4氨基安替比林(4AAP)2,3,4三氯苯酚(2,3,4trichlorophenol,TCP)体系的催化显色作用,酶及模拟酶催化活性比较为HRP>βCDhemin>hemin>MnTCPP。根据实验结果,讨论了胶束介质对RGB溶解氧催化体系的作用方式以及4AAPTCP酶催化体系的MichaeliMenten方程,并从不同空间结构(结合部位)模拟过氧化物酶催化性能的角度讨论了结合部位在酶催化反应中的有效作用。  相似文献   

4.
本文研究了moso-四(N-甲基-3-吡啶基)卟啉和铁的络合物作为辣根过氧化物酶的模拟酶催化过氧化氢氧化高香草酸的荧光反应的性能。拟订了用模拟酶催化测定H_2O_2和葡萄糖的荧光测定方法。其检出下限分别为1.1×10~(-7)mol/LH_2O_2和0.2μgml~(-1)葡萄糖。对血清中葡萄糖的含量进行了测定,结果令人满意。通过动力学研究,比较了该模拟酶与辣根过氧化物酶及其它模拟酶催化活性的相对大小。  相似文献   

5.
分子印迹微凝胶模拟酶的研究   总被引:2,自引:0,他引:2  
采用油包水反相乳液法, 以马来酸酐酯化葡聚糖-氨基吡啶偶联物(Dex-MA-AP)为功能大单体、过渡态类似物p-硝基苯磷酸酯(NPP)为模板分子、Co2+为中心离子, 制得分子印迹微凝胶模拟酶(MIGs). 用紫外光谱研究了Dex-MA-AP上吡啶功能基团与NPP之间的相互作用. 用SEM观察了MIGs的形貌和大小. 研究发现, MIGs催化活性受模板分子和交联剂用量的影响,MIGs催化p-硝基乙酸苯酯(NPA)水解反应行为可用Michaelis-Menten方程进行描述, 其最大催化水解反应速率(Vm)和Michaelis-Menten常数(Km)分别为25.1 nmol/h和0.030 mmol/L, 且具有较好的催化选择性.  相似文献   

6.
腺苷酸激酶是一个包含三个结构域(LID结构域、NMP结构域和CORE结构域)的蛋白质分子,其主要作用是催化化学反应Mg2+ + ATP + AMP ⇌ 2ADP + Mg2+,进而将细胞内ATP分子的浓度维持在合适的范围内。在腺苷酸激酶催化上述化学反应的过程中,需要有Mg2+的参与。最近的实验发现Mg2+不仅参与上述反应的化学步骤,而且对化学反应发生后底物的释放过程至关重要。已有晶体结构数据显示,在催化循环过程的化学反应步骤完成后,一个Mg2+可同时和分别位于LID结构域及NMP结构域的两个ADP分子配位。然而,在底物的释放与分离过程中, Mg2+可能只与其中一个ADP分子结合。由于Mg2+与ADP分子的结合情况会在很大程度上影响作为催化循环限速步骤的底物释放过程,因此人们有必要研究清楚在底物释放前Mg2+与催化产物ADP分子的配位情况,即Mg2+更倾向于与LID结构域的ADP分子结合还是与NMP结构域的ADP分子结合。本文中,我们对催化反应后底物释放前的酶-底物复合物(包含酶、两个ADP分子以及Mg2+)做了分子动力学模拟研究。我们基于metadynamics方法得到了Mg2+在两个ADP分子间转移的自由能面,发现在底物分离与释放过程中, Mg2+更倾向于与LID结构域的ADP分子结合。只有当LID结构域的ADP分子被质子化,同时NMP结构域的ADP分子处于去质子化状态时, Mg2+才会倾向于与NMP结构域的ADP分子结合。另外,我们也刻画了Mg2+转移过程中配体交换与脱水过程。本工作的研究结果有助于理解腺苷酸激酶催化循环后期的分子过程。  相似文献   

7.
赵自通  张真真  梁志宏 《化学进展》2022,34(11):2386-2404
肽基材料由于其与蛋白质高度相似和结构可控等优势,是构建人工模拟酶的一种理想材料;此外,小肽中氨基酸排列的多样性、序列的自组装特性、纳米结构稳定性、结构简单易于设计、良好生物相容性等优势,使得构建具有高效催化活性的肽基模拟酶具有非常好的应用前景。利用肽基材料通过理性设计活性位点来构建模拟酶具有多方面优势:(1) 氨基酸序列可以直接从天然酶中的活性位点获得,保留酶的功能,但降低了酶固有的复杂性;(2) 肽序列中可以嵌入各种具有特定结构及功能的活性位点,便于对模拟酶进行人工理性设计;(3) 肽具有良好的生物相容性,可以在温和条件下催化反应进行。根据催化降解化学键的不同,可将肽基水解模拟酶分为以下几种:催化酯键降解的肽基模拟酶、催化肽键降解肽基模拟酶、催化糖苷键水解的肽基模拟酶。本文主要分析了具有水解酶活性的肽基模拟酶的活性来源、构建方法及微观结构、催化反应类型、催化影响因素、活性改善方法、作用机理及未来潜在应用等;以期为构建具有高效水解催化活性的模拟酶提供借鉴,推进肽基水解模拟酶的研究发展及实际应用。  相似文献   

8.
模拟酶,又称人工酶,是在分子水平上模拟天然酶活性部位的形状、大小及其微环境等结构特征的分子或分子聚集体。随着纳米科学和超分子技术的发展,构筑具有生物催化活性的超分子模拟酶已经成为科学研究和应用开发领域的热点。肽组装金属酶是以多肽分子为基本单元,在非共价作用力协同作用下形成的超分子组装体。相比其他功能性材料,肽人工金属酶的结构及生物化学性质更接近天然酶,其分子本身更利于修饰改造,且生物相容性和功能性较好,使其在模拟酶方面具有独特优势。本文总结了近年来通过多肽自组装构建人工金属酶的研究进展,重点综述了多肽组装模式、组装体微观结构、超分子结构、金属活性中心微环境以及pH值对模拟酶催化活性的影响。增加自组装微结构的稳定性、增加催化活性以及扩大由人工酶催化的反应类型是肽人工金属酶研究中的主要挑战。构筑更加稳定的肽自组装纳米结构及更加精确的活性中心以模拟天然酶的结构和活性中心是正确的策略。  相似文献   

9.
糖苷酶作为一种重要的生物催化剂,在工业生物催化领域有着广阔的应用前景。但天然糖苷酶存在催化活性低、热稳定性和底物选择性差等缺点,严重限制了它在规模化生产中的推广应用。近年,有关糖苷酶催化机制与结构功能关系的研究备受关注,特别是计算机辅助酶设计在相关研究领域发挥着越来越重要的作用。本文综述了糖苷酶分子设计改造过程中应用的计算机辅助方法:包括同源比对、分子对接以及动力学模拟;系统阐述了这些计算方法在糖苷酶的结构与功能关系解析、酶催化分子机制、酶催化性能改造方面的应用现状。通过对上述方法的深入分析可以预见,计算机辅助方法将成为糖苷酶分子设计改造的重要手段,并且开发智能精准的计算分析方法将成为加快酶分子定向改造的新发展趋势。  相似文献   

10.
3-吲哚乙酸甲基转移(IAMT)催化甲基化植物激素3-吲哚乙酸(IAA)的端位自由羧酸,被认为在叶片发育过程中起到了至关重要的作用.然而,目前对于酶催化机理的详尽过程尚未被研究。在这里本文对拟南芥的甲基转移过程(AtIAMT1)进行结合量子力学和分子力学(QM/MM)的自由能模拟,并确定了其催化机制及IAMTs的底物特异性根源.研究表明,从S腺苷L甲硫氨酸(AdoMet)到3-吲哚乙酸盐(IAA)的甲基转移自由能垒要比从AdoMet到水杨酸盐的自由能垒低很多,这与之前的实验发现以及酶的底物特异性完全一致.这表明,与水杨酸相比,IAA相对高效性的甲基化是由于一部分过渡态构型的稳定性可能通过底物结合反映在反应物里,本文研究支持了之前关于计算模拟可对SABATH系列中酶的底物特异性根源进行深入理解的设想,并且可用来帮助生成可控的并具其他底物特异性的酶的实验研究.  相似文献   

11.
Aminoacyl-tRNA synthetases are centrally important enzymes in protein synthesis. We have investigated threonyl-tRNA synthetase from E. coli, complexed with reactants, using molecular mechanics and combined quantum mechanical/molecular mechanical (QM/MM) techniques. These modeling methods have the potential to provide molecular level understanding of enzyme catalytic processes. Modeling of this enzyme presents a number of challenges. The procedure of system preparation and testing is described in detail. For example, the number of metal ions at the active site, and their positions, were investigated. Molecular dynamics simulations suggest that the system is most stable when it contains only one magnesium ion, and the zinc ion is removed. Two different QM/MM methods were tested in models based on the findings of MM molecular dynamics simulations. AM1/CHARMM calculations resulted in unrealistic structures for the phosphates in this system. This is apparently due to an error of AM1. PM3/CHARMM calculations proved to be more suitable for this enzyme system. These results will provide a useful basis for future modeling investigations of the enzyme mechanism and dynamics.  相似文献   

12.
The structures of intermediates of the reaction of enzymatic hydrolysis of the cyclic dimeric guanosine monophosphate are computed by using the quantum mechanics/molecular mechanics (QM/MM) method. Tentative mechanisms of transformations at the active site of catalytic domains of phosphodiesterases are suggested based on the results of simulations.  相似文献   

13.
14.
We here present a theoretical study of the alkaline hydrolysis of a phosphodiester (methyl p-nitrophenyl phosphate or MpNPP) in the active site of Escherichia coli alkaline phosphatase (AP), a monoesterase that also presents promiscuous activity as a diesterase. The analysis of our simulations, carried out by means of molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials, shows that the reaction takes place through a D(N)A(N) or dissociative mechanism, the same mechanism employed by AP in the hydrolysis of monoesters. The promiscuous activity observed in this superfamily can be then explained on the basis of a conserved reaction mechanism. According to our simulations the specialization in the hydrolysis of phosphomonoesters or phosphodiesters, developed in different members of the superfamily, is a consequence of the interactions established between the protein and the oxygen atoms of the phosphate group and, in particular, with the oxygen atom that bears the additional alkyl group when the substrate is a diester. A water molecule, belonging to the coordination shell of the Mg(2+) ion, and residue Lys328 seem to play decisive roles stabilizing a phosphomonoester substrate, but the latter contributes to increase the energy barrier for the hydrolysis of phosphodiesters. Then, mutations affecting the nature or positioning of Lys328 lead to an increased diesterase activity in AP. Finally, the capacity of this enzymatic family to catalyze the reaction of phosphoesters having different leaving groups, or substrate promiscuity, is explained by the ability of the enzyme to stabilize different charge distributions in the leaving group using different interactions involving either one of the zinc centers or residues placed on the outer side of the catalytic site.  相似文献   

15.
AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1‐methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate‐determining hydrogen‐atom abstraction on competitive σ‐ and π‐pathways on a quintet spin‐state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen‐bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained.  相似文献   

16.
A series of enzymes for Kemp elimination of 5-nitrobenzisoxazole has been recently designed and tested. In conjunction with the design process, extensive computational analyses were carried out to evaluate the potential performance of four of the designs, as presented here. The enzyme-catalyzed reactions were modeled using mixed quantum and molecular mechanics (QM/MM) calculations in the context of Monte Carlo (MC) statistical mechanics simulations. Free-energy perturbation (FEP) calculations were used to characterize the free-energy surfaces for the catalyzed reactions as well as for reference processes in water. The simulations yielded detailed information about the catalytic mechanisms, activation barriers, and structural evolution of the active sites over the course of the reactions. The catalytic mechanism for the designed enzymes KE07, KE10(V131N), and KE15 was found to be concerted with proton transfer, generally more advanced in the transition state than breaking of the isoxazolyl N-O bond. On the basis of the free-energy results, all three enzymes were anticipated to be active. Ideas for further improvement of the enzyme designs also emerged. On the technical side, the synergy of parallel QM/MM and experimental efforts in the design of artificial enzymes is well illustrated.  相似文献   

17.
Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations indicate that the reaction of native HEWL with its natural substrate involves a covalent intermediate, in contrast to the 'textbook' mechanism for this seminal enzyme.  相似文献   

18.
Vitamin B(12) and its biologically active counterparts possess the only examples of carbon-cobalt bonds in living systems. The role of such motifs as radical reservoirs has potential application in future catalytic and electronic nanodevices. To fully understand radical generation in coenzyme B(12) (dAdoCbl)-dependent enzymes, however, major obstacles still need to be overcome. In this work, we have used Car-Parrinello molecular dynamics (CPMD) simulations, in a mixed quantum mechanics/molecular mechanics (QM/MM) framework, to investigate the initial stages of the methylmalonyl-CoA-mutase-catalyzed reaction. We demonstrate that the 5'-deoxyadenosyl radical (dAdo(?)) exists as a distinct entity in this reaction, consistent with the results of extensive experimental and some previous theoretical studies. We report free energy calculations and first-principles trajectories that help understand how B(12) enzymes catalyze coenzyme activation and control highly reactive radical intermediates.  相似文献   

19.
The hydrogen-transfer reaction catalysed by methylamine dehydrogenase (MADH) with methylamine (MA) as substrate is a good model system for studies of proton tunnelling in enzyme reactions--an area of great current interest--for which atomistic simulations will be vital. Here, we present a detailed analysis of the key deprotonation step of the MADH/MA reaction and compare the results with experimental observations. Moreover, we compare this reaction with the related aromatic amine dehydrogenase (AADH) reaction with tryptamine, recently studied by us, and identify possible causes for the differences observed in the measured kinetic isotope effects (KIEs) of the two systems. We have used combined quantum mechanics/molecular mechanics (QM/MM) techniques in molecular dynamics simulations and variational transition state theory with multidimensional tunnelling calculations averaged over an ensemble of paths. The results reveal important mechanistic complexity. We calculate activation barriers and KIEs for the two possible proton transfers identified-to either of the carboxylate oxygen atoms of the catalytic base (Asp428beta)-and analyse the contributions of quantum effects. The activation barriers and tunnelling contributions for the two possible proton transfers are similar and lead to a phenomenological activation free energy of 16.5+/-0.9 kcal mol(-1) for transfer to either oxygen (PM3-CHARMM calculations applying PM3-SRP specific reaction parameters), in good agreement with the experimental value of 14.4 kcal mol(-1). In contrast, for the AADH system, transfer to the equivalent OD1 was found to be preferred. The structures of the enzyme complexes during reaction are analysed in detail. The hydrogen bond of Thr474beta(MADH)/Thr172beta(AADH) to the catalytic carboxylate group and the nonconserved active site residue Tyr471beta(MADH)/Phe169beta(AADH) are identified as important factors in determining the preferred oxygen acceptor. The protein environment has a significant effect on the reaction energetics and hence on tunnelling contributions and KIEs. These environmental effects, and the related clearly different preferences for the two carboxylate oxygen atoms (with different KIEs) in MADH/MA and AADH/tryptamine, are possible causes of the differences observed in the KIEs between these two important enzyme reactions.  相似文献   

20.
The complex structure of glucose oxidase (GOX) with the substrate glucose was determined using a docking algorithm and subsequent molecular dynamics simulations. Semiempirical quantum chemical calculations were used to investigate the role of the enzyme and FAD co-enzyme in the catalytic oxidation of glucose. On the basis of a small active site model, substrate binding residues were determined and heats of formation were computed for the enzyme substrate complex and different potential products of the reductive half reaction. The influence of the protein environment on the active site model was estimated with a point charge model using a mixed QM/MM method. Solvent effects were estimated with a continuum model. Possible modes of action are presented in relation to experimental data and discussed with respect to related enzymes. The calculations indicate that the redox reaction of GOX differs from the corresponding reaction of free flavins as a consequence of the protein environment. One of the active site histidines is involved in substrate binding and stabilization of potential intermediates, whereas the second histidine is a proton acceptor. The former one, being conserved in a series of oxidoreductases, is also involved in the stabilization of a C4a-hydroperoxy dihydroflavin in the course of the oxidative half reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号